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We propose a new penalty, the springback penalty, for constructing models 
to recover an unknown signal from incomplete and inaccurate measurements. 
Mathematically, the springback penalty is a weakly convex function. It bears various 
theoretical and computational advantages of both the benchmark convex �1 penalty 
and many of its non-convex surrogates that have been well studied in the literature. 
We establish the exact and stable recovery theory for the recovery model using the 
springback penalty for both sparse and nearly sparse signals, respectively, and derive 
an easily implementable difference-of-convex algorithm. In particular, we show its 
theoretical superiority to some existing models with a sharper recovery bound for 
some scenarios where the level of measurement noise is large or the amount of 
measurements is limited. We also demonstrate its numerical robustness regardless of 
the varying coherence of the sensing matrix. The springback penalty is particularly 
favorable for the scenario where the incomplete and inaccurate measurements are 
collected by coherence-hidden or -static sensing hardware due to its theoretical 
guarantee of recovery with severe measurements, computational tractability, and 
numerical robustness for ill-conditioned sensing matrices.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Signal recovery aims at recovering an unknown signal from its measurements, which are often incomplete 
and inaccurate due to technical, economical, or physical restrictions. Mathematically, a signal recovery 
problem can be expressed as estimating an unknown x̄ ∈ Rn from an underdetermined linear system

b = Ax̄ + e, (1.1)

where A ∈ Rm×n is a full row-rank sensing matrix such as a projection or transformation matrix (see, e.g., 
[3,6,7]), b ∈ Rm \{0} is a vector of measurements, e ∈ Rm is some unknown but bounded noise perturbation 
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in B(τ) := {e ∈ Rm : ‖e‖2 ≤ τ}, and the number m of measurements is considerably smaller than the size n
of the signal x̄. The set B(τ) encodes both the cases of noise-free (τ = 0) and noisy (τ > 0) measurements.

Physically, a signal of interest, or its coefficients under certain transformation, is often sparse (see, e.g., 
[3]). Hence, it is natural to seek a sparse solution to the underdetermined linear system (1.1), though it 
has infinitely many solutions. We say that x ∈ Rn is s-sparse if ‖x‖0 ≤ s, where ‖x‖0 counts the number 
of nonzero entries of x. To find the sparsest solution to (1.1), one may consider solving the following 
minimization problem:

min
x∈Rn

‖x‖0 s.t. Ax− b ∈ B(τ), (1.2)

in which ‖x‖0 serves as a penalty term of the sparsity, and it is referred to as the �0 penalty for convenience. 
Due to the discrete and discontinuous nature of the �0 penalty, the model (1.2) is NP-hard [3]. This means 
the model (1.2) is computationally intractable, and this difficulty has inspired many alternatives to the 
�0 penalty in the literature. A fundamental proxy of the model (1.2) is the basis pursuit (BP) problem 
proposed in [12]:

min
x∈Rn

‖x‖1 s.t. Ax− b ∈ B(τ). (1.3)

In this convex model, ‖x‖1 :=
∑n

i=1 |xi| and it is called the �1 penalty hereafter. Recall that ‖x‖1 is the 
convex envelope of ‖x‖0 (see, e.g., [35]), and it induces sparsity most efficiently among all convex penalties 
(see [3]). The BP problem (1.3) has been intensively studied in voluminous papers since the seminal works 
[5,6,13], in which various conditions have been comprehensively explored for the exact recovery via the 
convex model (1.3).

The BP problem (1.3) is fundamental for signal recovery, but its solution may be over-penalized because 
the �1 penalty tends to underestimate high-amplitude components of the solution, as analyzed in [15]. Hence, 
it is reasonable to consider non-convex alternatives to the �1 penalty and upgrade the model (1.3) to achieve 
a more accurate recovery. In the literature, some non-convex penalties have been well studied, such as the 
smoothly clipped absolute deviation (SCAD) [15], the capped �1 penalty [49], the transformed �1 penalty 
[29,48], and the �p penalty with 0 < p < 1 [9,10,27]. Besides, one particular penalty is the minimax concave 
penalty (MCP) proposed in [46], and it has been widely shown to be effective in reducing the bias from the 
�1 penalty [46]. Moreover, the so-called �1−2 penalty has been studied in the literature, e.g. [14,44,45], to 
mention a few. Some of these penalties will be summarized in Section 2. In a nutshell, convex penalties are 
more tractable in the senses of theoretical analysis and numerical computation, while they are less effective 
for achieving the desired sparsity (i.e., the approximation to the �0 penalty is less accurate). Non-convex 
penalties are generally the opposite.

Considering the pros and cons of various penalties, we are motivated to find a weakly convex penalty 
that can keep some favorable features from both the �1 penalty and its non-convex alternatives, and the 
resulting model for signal recovery is preferable in the senses of both theoretical analysis and numerical 
computation. More precisely, we propose the springback penalty

RSPB
α (x) := ‖x‖1 −

α

2 ‖x‖
2
2, (1.4)

where α > 0 is a model parameter, and it should be chosen meticulously. We will show later that a larger 
α implies a tighter stable recovery bound. On the other hand, a too large α may lead to negative values 
of RSPB

α (x). Thus, a reasonable upper bound on α should be considered to ensure the well-definedness of 
the springback penalty (1.4). In the following, we will see that if the matrix A is well-conditioned (e.g., 
when A is drawn from a Gaussian matrix ensemble), then the requirement on α is quite loose; while if 
A is ill-conditioned (e.g., A is drawn from an oversampled partial DCT matrix ensemble), then generally 
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the upper bound on α should be better discerned for the sake of designing an algorithm with theoretically 
provable convergence. We refer to Theorem 3.1, Theorem 4.1, Section 5.2, and Section 6.2 for more detailed 
discussions on the determination of α for the springback penalty (1.4) theoretically and numerically. With 
the springback penalty (1.4), we propose the following model for signal recovery:

min
x∈Rn

RSPB
α (x) s.t. Ax− b ∈ B(τ). (1.5)

Mathematically, the springback penalty (1.4) is a weakly convex function, and thus the springback-penalized 
model (1.5) can be intuitively regarded as an “average” of the convex BP model (1.3) and the mentioned 
non-convex surrogates. Recall that a function f : Rn → R is α-weakly convex if x �→ f(x) + α

2 ‖x‖2
2

is convex. One advantage of the model (1.5) is that various results developed in the literature on weakly 
convex optimization problems (e.g., [21,31]) can be used for both theoretical analysis and algorithmic design. 
Indeed, the weak convexity of the springback penalty (1.4) enables us to derive sharper recovery results 
with fewer measurements and to design some efficient algorithms easily.

The rest of this paper is organized as follows. In the next section, we summarize some preliminaries for 
further analysis. In Sections 3 and 4, we establish the exact and stable recovery theory of the springback-
penalized model (1.5) for sparse and nearly sparse signals, respectively. We also theoretically compare 
the springback penalty (1.4) with some other penalties in these two sections. In Section 5, we design a 
difference-of-convex algorithm (DCA) for the springback-penalized model (1.5) and study its convergence. 
Some numerical results are reported in Section 6 to verify our theoretical assertions, and some conclusions 
are drawn in Section 7.

2. Preliminaries

In this section, we summarize some preliminaries that will be used for further analysis.

2.1. Notations

For any x, y ∈ Rn, let 〈x, y〉 = xTy be their inner product, and let supp(x) := {1 ≤ i ≤ n : xi 	= 0}
be the support of x. Let I be an identity matrix whose dimension is clear in accordance with the context. 
Let Λ ⊆ {1, 2, . . . , n} (or Λ with some super/subscripts) be an index set, and |Λ| the cardinality of Λ. For 
x ∈ Rn and A ∈ Rm×n, let xΛ ∈ Rn be the vector with the same entries as x on indices Λ and zero entries 
on indices Λc, and let AΛ ∈ Rm×|Λ| be the submatrix of A with column indices Λ. For x ∈ R, sgn(x) is the 
sign function of x. For a convex function f , ∂(f(x)) denotes the subdifferential of f at x.

2.2. A glance at various penalties

In the literature, there are a variety of convex and non-convex penalties. Below we list six of the most 
important ones, with x ∈ Rn.

� The �1 penalty [3,12]:

R�1(x) := ‖x‖1 =
n∑

i=1
|xi|.

� The elastic net penalty [50]:

REL(x) := ‖x‖1 + α

2 ‖x‖
2
2 =

n∑
|xi| +

α

2

n∑
|xi|2.
i=1 i=1
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� The �p penalty with parameter 0 < p < 1 [9,10]:

R�p(x) := ‖x‖pp =
n∑

i=1
|xi|p.

� The transformed �1 (TL1) with parameter β > 0 [29,48]:

RTL1
β (x) :=

n∑
i=1

(β + 1)|xi|
β + |xi|

.

� The minimax concave penalty (MCP) with parameter μ > 0 [46]:

RMCP
μ (x) :=

n∑
i=1

φMCP
μ (xi), (2.1)

where

φMCP
μ (xi) =

{
|xi| − x2

i /(2μ), |xi| ≤ μ,

μ/2, |xi| ≥ μ.

� The �1−2 penalty [14,45]:

R�1−2(x) := ‖x‖1 − ‖x‖2 =
n∑

i=1
|xi| −

√√√√ n∑
i=1

|xi|2.

Note that the �1 penalty is convex, the elastic net penalty is strongly convex, and the others are non-convex.

2.3. Relationship among various penalties

For any nonzero vector x ∈ Rn and α > 0, the springback penalty RSPB
α (x) → R�1(x) as α → 0. Besides, 

RSPB
α (x) is reduced to the MCP in [46] within the �∞-ball {x ∈ Rn : ‖x‖∞ ≤ μ} if α = 1/μ. The springback 

penalty appears to be a resemblance to the �1−2 penalty, but their difference is many-sided. For instance, 
the gradient of ‖x‖2 is not defined at the origin.

Fig. 1 displays some scalar (one-dimensional) penalties, including the �1 penalty, the �0.5 penalty, the 
transformed �1 penalty with β = 1, the MCP with μ = 0.75, and the springback penalty with α = 1/μ and 
α = 0.15. The �1−2 penalty is not plotted, as it is none other than zero in the one-dimensional case. To give 
a better visual comparison, we scale them to attain the point (1, 1). It is shown in Fig. 1 that the springback 
penalty is close to the �1 penalty when α = 0.15. The springback penalty with α = 1/μ coincides with the 
MCP for |x| ≤ μ if we do not scale them. The behavior of the springback penalty for |x| > μ attracts our 
interest because it turns around and heads towards the x-axis. According to Fig. 1, this behavior is clearer 
in terms of the thresholding operator corresponding to the proximal mapping of the springback penalty, 
whose mathematical descriptions are given in Section 2.4.

As mentioned, the proposed springback penalty (1.4) balances the approximation quality of the �0 penalty 
and the tractability in analysis and computation, and it is in between the convex and non-convex penalties. 
More specifically, it is in between the �1 penalty and the MCP. For any x ∈ Rn, we can always find a 
parameter μ for the MCP such that ‖x‖∞ ≤ μ with a resulting penalty in the form of ‖x‖1 − ‖x‖2

2/(2μ). 
This penalty inherits the approximation quality of the �0 penalty from the MCP and the analytical and 
computational advantages of the �1 penalty. Inasmuch as this penalty, we consider the more general penalty 
(1.4) in which 1/μ is replaced by a more flexible parameter α > 0.
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Fig. 1. Scalar penalties and corresponding thresholding operators (for representing proximal mappings with λ = 0.25): the �1 penalty 
and the soft thresholding operator; the �p penalty, whose proximal mapping has no closed-form expressions (hence no thresholding 
operator plotted); the transformed �1 penalty with β = 1, whose proximal mapping can be expressed explicitly by a thresholding 
operator given in [47]; the MCP with μ = 0.75 and the firm thresholding operator; and two springback penalties with α = 1/μ
and α = 0.15, and the springback thresholding operator.

2.4. Proximal mappings and thresholding operators

For a function R : Rn → R, as defined in [32], the proximal mapping of R is defined as

proxλ [R] (x) := arg min
y∈Rn

{
λR(y) + 1

2‖y − x‖2
2

}
, (2.2)

where λ > 0 is a regularization parameter. In (2.2), we slightly abuse the notation “=”. This mapping takes 
a vector x ∈ Rn and maps it into a subset of Rn, which might be empty, a singleton, or a set with multiple 
vectors; and the image of y under this mapping is a singleton if the function R is proper closed and convex 
[1]. For a given optimization model, if the proximal mapping of its objective function has a closed-form 
expression, then usually it is important and necessary to consider how to take advantage of this feature for 
algorithmic design.

When the proximal mapping of a penalty can be represented explicitly, the closed-form representation is 
often called a thresholding operator or a shrinkage operator in the literature. For example, as analyzed in 
[47], with the soft thresholding operator

soft(w;λ) = sgn(w)max{|w| − λ, 0},

which has been widely used in various areas such as compressed sensing and image processing, the proximal 
mapping (2.2) of the �1 penalty can be expressed explicitly by

[
proxλ

[
R�1

]
(x)

]
i
= soft(xi;λ), i = 1, . . . , n.

The proximal mapping of a non-convex penalty, in general, does not have a closed-form expression; such 
cases include the �1−2 penalty and the �p penalty with 0 < p < 1. However, there are some particular non-
convex penalties whose proximal mappings can still be represented explicitly. For instance, the transformed 
�1 penalty [47] and the MCP [46]. In particular, with the following firm thresholding operator
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firm(w;λ, μ) =

⎧⎪⎪⎨
⎪⎪⎩

0, |w| ≤ λ,

sgn(w)μ(|w|−λ)
μ−λ , λ ≤ |w| ≤ μ,

w, |w| ≥ μ,

which was first proposed in [19], it was further studied in [46] that the proximal mapping (2.2) of the 
MCP can be expressed explicitly by a firm thresholding operator for the case of orthonormal designs. More 
specifically, the proximal mapping (2.2) of the MCP is

[
proxλ

[
RMCP

μ

]
(x)

]
i
= firm(xi;λ, μ), i = 1, . . . , n.

Below, we show that for the springback penalty (1.4) with a well chosen α, its proximal mapping can 
also be expressed explicitly.

Definition 2.1. The springback thresholding operator is defined as

springback(w;λ, α) =
{

0, |w| ≤ λ,

sgn(w) |w|−λ
1−λα , |w| > λ.

(2.3)

Proposition 2.1. If 1 −λα > 0, then the proximal mapping of the springback penalty (1.4) can be represented 
explicitly as

[
proxλ

[
RSPB

α

]
(x)

]
i
= springback(xi;λ, α), i = 1, . . . , n.

Proof. When R(x) = R�1(x), it follows from (2.2) that, for any z ∈ Rn satisfying 0 ∈ z − y +
λ∂ (‖z‖1), there holds zi = soft(yi; λ), i.e., z = proxλ

[
R�1

]
(y). The assumption 1 − λα > 0 en-

sures ∇2 ( 1
2‖x− y‖2

2 − λα
2 ‖x‖2

2
)

= (1 − λα)I to be positive definite. Thus, the optimization problem 
occurred in (2.2) is convex. When R(x) = RSPB

α (x) in (2.2), for any z ∈ Rn satisfying the condition 
0 ∈ z − y + λ∂(‖z‖1) − λαz, which is equivalent to

0 ∈ z − 1
1 − λα

y + λ

1 − λα
∂(‖z‖1), (2.4)

we have z = proxλ

[
RSPB

α

]
(y). It also follows from (2.4) that

zi = soft
(

yi
1 − λα

; λ

1 − λα

)
= springback(yi;λ, α).

Hence, the assertion is proved. �
Recall that the springback penalty (1.4) is a weakly convex function. Its thresholding operator defined 

in (2.3) is also in between the soft and firm thresholding operators. As limμ→∞ firm(w; λ, μ) = soft(w; λ), a 
compromising μ could be large enough such that |w| ≤ μ and it reaches a certain compromise between the 
soft and firm thresholding operators. In this case, we have a particular springback thresholding operator

springback(w;λ, 1/μ) =
{

0, |w| ≤ λ,

sgn(w)μ(|w|−λ)
μ−λ , |w| ≥ λ.

If 1/μ is replaced by a more general α > 0, then the springback thresholding operator (2.3) is recovered.
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2.5. Rationale of the name

Springback is a concept in applied mechanics (see, e.g., [41]). Fig. 1 gives more explanations for naming 
(1.4) springback. With λ = 0.25, Fig. 1 displays the thresholding operators for w ∈ [−1.5, 1.5], including 
the soft thresholding operator, the transformed �1 thresholding operator with β = 1, the firm thresholding 
operator with μ = 0.75, and the springback thresholding operator with α = 1/μ. The transformed �1
thresholding operator enforces w with |w| ≤ λ(β + 1)/β to be 0, and then its outputs approach to w as 
|w| increases. All the other thresholding operators enforce w with |w| ≤ λ to be 0. For w ≥ λ, the soft 
thresholding operator subtracts λ from |w| and thus causes the �1 penalty to underestimate high-amplitude 
components; the firm thresholding operator’s outputs jump from 0 to μ until |w| exceeds μ, afterwards its 
output is w. For the springback thresholding operator, its outputs jump from 0 to μ until |w| exceeds μ, 
and afterwards its outputs still keep going along the previous jumping trajectory.

In applied mechanics, spring is related to the process of bending some materials. When the bending 
process is done, the residual stresses cause the material to spring back towards its original shape, so the 
material must be over-bent to achieve the proper bending angle. Note that the soft thresholding operator 
always underestimates high-amplitude components, and the components ‖x‖1 and −α

2 ‖x‖2
2 in the springback 

penalty are decoupled. If we deem the soft thresholding operator as a process of over-bending, which stems 
for the component ‖x‖1, then the output of the soft thresholding operator will be sprung back toward 
w, which is achieved separately in consideration with the component −α

2 ‖x‖2
2. Such a springback process 

occurs for both λ ≤ |w| ≤ μ and |w| ≥ μ. The springback behavior is more obvious for those w with larger 
absolute values, and this coincides with the behavior of the springback penalty in Fig. 1. That is, once |x|
exceeds μ, the penalty turns around and heads towards the x-axis. This process may also be explained as 
a compensation of the loss of |w| with |w| ≤ λ.

3. Springback-penalized model for sparse signal recovery

In this section, we focus on the recovery of a sparse signal using the springback-penalized model (1.5). 
After reviewing some basic knowledge of compressed sensing, we identify some conditions for exact and 
robust recovery using the springback-penalized model (1.5), respectively.

3.1. Compressed sensing basics

In some seminal compressed sensing papers such as [4,13], recovery conditions have been established for 
the BP model (1.3). These conditions rely on the restricted isometry property (RIP) of the sensing matrix
A, as proposed in [7].

Definition 3.1. For an index set T ⊂ {1, 2, . . . , n} and an integer s with |T | ≤ s, the s-restricted isometry 
constant (RIC) of A ∈ Rm×n is the smallest δs ∈ (0, 1) such that

(1 − δs)‖x‖2
2 ≤ ‖ATx‖2

2 ≤ (1 + δs)‖x‖2
2

for all subsets T with |T | ≤ s and all x ∈ R|T |. The matrix A is said to satisfy the s-restricted isometry 
property (RIP) with δs.

Denoting by xopt the minimizer of the BP problem (1.3), if A satisfies δ3s < 3(1 − δ4s) − 1, then for an 
s-sparse x̄, one has

‖xopt − x̄‖2 ≤ Csτ, (3.1)
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where Cs is a constant which may only depend on δ4s. We refer to [5,6] for more details. If the measurements 
are noise-free, i.e., τ = 0, then the error bound (3.1) implies exact recovery. Exact recovery is guaranteed 
only in the idealized situation where x̄ is s-sparse and the measurements are noise-free. If the measurements 
are perturbed by some noise, then the bound (3.1) is usually referred to as the robust recovery result with 
respect to the measurement noise. In more realistic scenarios, we can only claim that x̄ is close to an s-sparse 
vector, and the measurements may also be contaminated. In such cases, we can recover x̄ with an error 
controlled by its distance to s-sparse vectors, and it was proved in [5] that

‖xopt − x̄‖2 ≤ C1,sτ + C2,s
‖x̄− x̄s‖1√

s
, (3.2)

where x̄s is the truncated vector corresponding to the s largest values of x̄ (in absolute value), and C1,s and 
C2,s are two constants which may only depend on δ4s. The bound (3.2) is usually referred to as the stable 
recovery results. Recovery conditions for other models with different penalties are usually not as extensive 
as the BP model (1.3). Under the framework of the RIP or some generalized versions, recovery theory for 
the BP model (1.3) has been generalized to the �p-penalized model in [9,17]. With the unique representation 
property of A, stable recovery results for the MCP-penalized model were derived in [43] and an upper bound 
for 

∑n
i=1 φ

MCP
μ (xopt

i − x̄i), but not for ‖xopt − x̄‖2, was obtained. We recommend the monograph [18] for a 
more comprehensive and detailed exhibition on compressed sensing.

3.2. Recovery guarantee using the springback-penalized model

Still denoting by xopt the minimizer of the springback-penalized model (1.5), we have the following exact 
and robust recovery results of the model (1.5) for an s-sparse x̄.

Theorem 3.1 (Recovery of sparse signals). Let x̄ ∈ Rn be an unknown s-sparse vector to be recovered. For a 
given sensing matrix A ∈ Rm×n, let b ∈ Rm be a vector of measurements from b = Ax̄ + e with ‖e‖2 ≤ τ , 
and let δ3s and δ4s be the 3s- and 4s-RIC’s of A, respectively. Suppose A satisfies δ3s < 3(1 − δ4s) − 1 and 
α satisfies

α ≤
√

1 − δ4s
√

3s−
√

1 + δ3s
√
s

(
√

1 − δ4s +
√

1 + δ3s)‖xopt‖2
, (3.3)

then the minimizer xopt of the problem (1.5) satisfies xopt = x̄ when τ = 0; and it satisfies

‖xopt − x̄‖2 ≤
√

2√
D1

√
τ (3.4)

when τ ≥ 0, where

D1 = α

2

√
1 − δ4s +

√
1 + δ3s√

3s +
√
s

. (3.5)

Proof. Let xopt = x̄+ v, and Λ0 be the support of x̄. It is clear that vΛ0 = xopt
Λ0

− x̄ and vΛc
0 = xopt

Λc
0
. On the 

one hand, we know that

‖xopt‖1 −
α‖xopt‖2

2 ≤ ‖x̄‖1 −
α‖x̄‖2

2.
2 2
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On the other hand, it holds that

‖xopt‖1 −
α

2 ‖x
opt‖2

2 =‖x̄ + vΛ0‖1 + ‖vΛc
0‖1 −

α

2 ‖x̄ + v‖2
2

≥‖x̄‖1 − ‖vΛ0‖1 + ‖vΛc
0‖1 −

α

2
(
‖x̄‖2

2 + 2 〈x̄, v〉 + ‖v‖2
2
)
.

Then, we have that

‖vΛc
0‖1 ≤ ‖vΛ0‖1 −

α

2 ‖v‖
2
2 + α‖v‖2

2 + α 〈x̄, v〉 = ‖vΛ0‖1 −
α

2 ‖v‖
2
2 + α

〈
xopt, v

〉
.

We continue by arranging the indices in Λc
0 in order of decreasing magnitudes (in absolute value) of vΛc

0 , 
and then dividing Λc

0 into subsets of size 3s. Set Λc
0 = Λ1

⋃
Λ2

⋃
· · ·

⋃
Λ�, i.e., Λ1 contains the indices of 

the 3s largest entries (in absolute value) of vΛc
0 , Λ2 contains the indices of the next 3s largest entries (in 

absolute value) of vΛc
0 , and so on. The cardinal number of Λ� may be less than 3s. Denoting Λ01 = Λ0

⋃
Λ1

and using the RIP of A, we have

‖Av‖2 ≥ ‖AΛ01vΛ01‖2 −
∥∥∥∥∥

�∑
i=2

AΛi
vΛi

∥∥∥∥∥
2

≥
√

1 − δ4s‖vΛ01‖2 −
√

1 + δ3s

�∑
i=2

‖vΛi
‖2.

As the magnitude of every vt indexed by t ∈ Λi+1 is less than the average of magnitudes of vt indexed by 

t ∈ Λi, there holds |vt| ≤
‖vΛi

‖1
3s , where t ∈ Λi+1. Then, we have

‖vΛi+1‖2
2 ≤ 3s‖vΛi

‖2
1

(3s)2 = ‖vΛi
‖2
1

3s .

Together with ‖vΛ0‖1 ≤ √
s‖vΛ0‖2 ≤ √

s‖vΛ01‖2, we have

�∑
i=2

‖vΛi
‖2 ≤

�−1∑
i=1

‖vΛi
‖1√

3s
≤ 1√

3s
‖vΛc

0‖1 ≤ 1√
3s

(√
s‖vΛ01‖2 −

α

2 ‖v‖
2
2 + α

〈
xopt, v

〉)
.

Thus, it holds that

‖Av‖2 ≥
(√

1 − δ4s −
√

1 + δ3s
√
s√

3s

)
‖vΛ01‖2 + α

√
1 + δ3s

2
√

3s
‖v‖2

2 −
α
√

1 + δ3s√
3s

〈
xopt, v

〉
. (3.6)

Note that

‖v‖2 ≤ ‖vΛ01‖2 +
�∑

i=2
‖vΛi

‖2 ≤
(

1 +
√
s√
3s

)
‖vΛ01‖2 −

α

2
√

3s
‖v‖2

2 + α√
3s

〈
xopt, v

〉
,

and it can be written as

‖vΛ01‖2 ≥
√

3s√ √
(

α√ ‖v‖2
2 + ‖v‖2 −

α√
〈
xopt, v

〉)
.

3s + s 2 3s 3s



328 C. An et al. / Appl. Comput. Harmon. Anal. 61 (2022) 319–346
With the assumption δ3s < 3(1 − δ4s) − 1 on A, the coefficient of ‖vΛ01‖2 in (3.6) is positive and thus we 
have

‖Av‖2 ≥
√

1 − δ4s
√

3s−
√

1 + δ3s
√
s√

3s +
√
s

(
α

2
√

3s
‖v‖2

2 + ‖v‖2 −
α√
3s

〈
xopt, v

〉)

+ α
√

1 + δ3s

2
√

3s
‖v‖2

2 −
α
√

1 + δ3s√
3s

〈
xopt, v

〉

=α

2

(√
1 − δ4s +

√
1 + δ3s√

3s +
√
s

)
‖v‖2

2 +
√

1 − δ4s
√

3s−
√

1 + δ3s
√
s√

3s +
√
s

‖v‖2

− α

(√
1 − δ4s +

√
1 + δ3s√

3s +
√
s

)〈
xopt, v

〉
.

(3.7)

If 〈xopt, v〉 ≤ 0, then ‖Av‖2 ≥ D1‖v‖2
2. If 〈xopt, v〉 > 0, then the condition (3.3) on α guarantees

√
1 − δ4s

√
3s−

√
1 + δ3s

√
s√

3s +
√
s

‖v‖2 − α

(√
1 − δ4s +

√
1 + δ3s√

3s +
√
s

)〈
xopt, v

〉

≥
√

1 − δ4s
√

3s−
√

1 + δ3s
√
s√

3s +
√
s

(
‖v‖2 −

〈
xopt

‖xopt‖2
, v

〉)
≥ 0,

where we use the Cauchy–Schwarz inequality. Hence we also have ‖Av‖2 ≥ D1‖v‖2
2.

When τ = 0, the inequality Av = A(xopt − x̄) = b − b = 0 renders 0 = ‖Av‖2 ≥ D1‖v‖2
2, which implies 

‖v‖2 = 0. Thus xopt = x̄. When τ > 0, the inequality

‖Av‖2 = ‖Axopt −Ax̄‖2 ≤ ‖Axopt − b‖2 + ‖Ax̄− b‖2 ≤ 2τ

leads to 2τ ≥ D1‖v‖2
2, which implies (3.4). �

In analysis of signal recovery models with various convex and non-convex penalties, such as the �1 penalty 
[6,9] and the �1−2 penalty [44,45], a linear lower bound for ‖A(xopt − x̄)‖2 is derived somehow. The proof of 
Theorem 3.1 mainly follows the idea of [6], but we derive a quadratic lower bound for the term ‖A(xopt−x̄)‖2. 
Thus, it is worthy noting that our results cannot be reduced to the result of the BP model (1.3) as α → 0. 
Indeed, the quadratic bound (3.6) in our proof is reduced to a linear bound as α → 0, which then leads 
to the same results as the BP model (1.3). However, we handle our final quadratic bound by removing its 
linear and constant terms and hence the obtained result cannot be reduced to the result of the BP model 
(1.3) as α → 0.

Besides, the condition (3.3) on α is required for the springback-penalized model (1.5). It is impossible 
to choose an α satisfying (3.3) unless we have a priori estimation on ‖xopt‖2 before solving the problem 
(1.5). Thus, the condition (3.3) then can be interpreted as a posterior verification in the sense that it can 
be verified once xopt is obtained by solving the problem (1.5).

Remark 3.1 (Posterior verification). In practice, we solve the springback-penalized model (1.5) numerically 
and thus obtain an approximate solution, denoted by x∗, subject to a preset accuracy ε > 0. That is, 
‖xopt − x∗‖2 ≤ ε. Then, the posterior verification (3.3) is guaranteed if

α ≤
√

1 − δ4s
√

3s−
√

1 + δ3s
√
s√ √ ∗ .
( 1 − δ4s + 1 + δ3s)(‖x ‖2 + ε)
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Table 1
Exact recovery conditions recovery models with various 
penalties.

Penalty RIP condition

�1 [6] δ3s < 3(1 − δ4s) − 1
�p (0 < p < 1) [9] δ3s < 3(2−p)/p(1 − δ4s) − 1
transformed �1 [48] δ3s <

(
β

β+1

)2
3(1 − δ4s) − 1

�1−2 [44,45] δ3s < a(s)(1 − δ4s) − 1
springback δ3s < 3(1 − δ4s) − 1

3.3. On the exact and robust recovery

In Theorem 3.1, we establish conditions for exact and robust recovery using the springback-penalized 
model (1.5). Table 1 lists the exact recovery conditions for five other popular models in the literature. In 
particular, the springback-penalized model (1.5) and the �1-penalized model, i.e., the BP model (1.3), have 
the same RIP condition. This condition is more stringent than that of the �p-penalized model (0 < p < 1) 
but weaker than those of the transformed �1- and �1−2-penalized models. Beside the RIP condition, there 
is an additional assumption a(s) > 1 for the �1−2-penalized model, where a(s) was first derived in [45] and 
slightly improved in [44] as

a(s) =
(

3s− 1√
3s +

√
4s− 1

)2

.

Note that a(s) < 3 was shown in [44,45] for both the cases.
We then discuss robust recovery results. If α → 0, then the result (3.4) cannot provide any information 

as 
√

2√
D1

→ ∞. However, for an appropriate α, the bound (3.4) is informative and attractive. The robust 
recovery results of the �1-, �p-, transformed �1- and �1−2-penalized models were shown to be linear with 
respect to the level of noise τ [6,9,44,45,48], in the sense of

‖xopt − x̄‖2 ≤ Csτ, (3.8)

where Cs is some constant. Thus, under the conditions of Theorem 3.1, the bound (3.4) for the springback-
penalized model (1.5) is tighter than (3.8) in the sense of

√
2√
D1

√
τ ≤ Csτ (3.9)

if the level of noise τ satisfies

τ >
2

D1C2
s

. (3.10)

Assume that the recovery conditions listed in Table 1 are satisfied for each model, respectively. Then, we 
can summarize their corresponding ranges of τ in Table 2 such that the robust recovery bound (3.4) of the 
springback-penalized model (1.5) is tighter than all the others in the sense of (3.9).

These ranges on τ look complicated. To have a better idea, we consider a toy example with s = 20, 
δ3s = 1/4, δ4s = 1/3, α = 1 for the springback penalty (1.4), and β = 1 for the transformed �1 penalty. 
Then, the springback-penalized model (1.5) would give a tighter bound in the sense of (3.9) than the �1-, 
�0.2-, �0.5-, �0.999-, transformed �1-, and �1−2-penalized models if τ > 0.1385, 0.0271, 0.2333, 0.1391, 0.0807, 
and 2.8652 × 10−4, respectively.
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Table 2
Ranges of the level of noise such that the springback bound (3.4) is tighter than the bound 
(3.8) in the sense of (3.9).

Penalty When the springback bound (3.4) is tighter than the bound (3.8)

�1 [5,6] τ > (
√

3s+
√

s)(
√

3
√

1−δ4s−
√

1+δ3s)2

4α(
√

1+δ3s+
√

1−δ4s)

�p (0 < p < 1) [37] τ >
(
√

3s+
√

s)
(
(1−δ4s)p/2−(1+δ3s)p/23p/2−1

)2/p

α(
√

1−δ4s+
√

1+δ3s)
(
1+ 1

(2/p−1)32/p−1

)

transformed �1 [48] τ >
4(

√
3s+

√
s)(1−δ3s)

(
β

β+1

√
3
√

1−δ4s−
√

1+δ3s

)2

α(
√

1−δ4s+
√

1+δ3s)
(

β

β+1

√
3
√

1−δ4s−
√

1+δ3s+
√

3s
√

1−δ3s

)2

�1−2 [44] τ >
(
√

3s+
√

s)(
√
a(s)(1−δ4s)−

√
1+δ3s)2

α(
√

1−δ4s+
√

1+δ3s)(
√

3s−
√

s·a(s))2

Can we further improve the robust recovery result (3.4) in Theorem 3.1? The following proposition 
suggests a potential improvement. Moreover, without any requirement on α, this proposition also means, 
even if the posterior verification (3.3) is violated sometimes, the springback-penalized model (1.5) may 
still give a good recovery. Note that this proposition is only of conceptual sense, because its assumption 
〈xopt, xopt − x̄〉 ≤ 0 is not verifiable. Nevertheless, it helps us discern a possibility of achieving a better 
recovery bound than (3.4).

Proposition 3.1. Let x̄ ∈ Rn be an unknown s-sparse vector to be recovered. For a given sensing matrix 
A ∈ Rm×n, let b ∈ Rm be a vector of measurements from b = Ax̄ + e with ‖e‖2 ≤ τ , and let δ3s and 
δ4s be the 3s- and 4s-RIC’s of A, respectively. Let xopt be the minimizer of the problem (1.5) and assume 
〈xopt, xopt − x̄〉 ≤ 0. Suppose A satisfies δ3s < 3(1 − δ4s) − 1, then xopt = x̄ when τ = 0; and xopt satisfies

‖xopt − x̄‖2 ≤
√

D2
2

4D2
1

+ 2
D1

τ − D2

2D1
(3.11)

when τ ≥ 0, where D1 is the constant (3.5) given in Theorem 3.1 and

D2 =
√

3
√

1 − δ4s −
√

1 + δ3s√
3 + 1

. (3.12)

Proof. In the case of 〈xopt, v〉 ≤ 0, it follows straightforwardly from (3.7) that

‖Av‖2 ≥α

2

(√
1 − δ4s +

√
1 + δ3s√

3s +
√
s

)
‖v‖2

2 +
√

1 − δ4s
√

3s−
√

1 + δ3s
√
s√

3s +
√
s

‖v‖2

:=D1‖v‖2
2 + D2‖v‖2.

The assumption δ3s < 3(1 − δ4s) − 1 guarantees D2 > 0. Hence, when τ = 0, as Av = A(xopt − x̄) = 0, we 
have 0 = ‖Av‖2 ≥ D1‖v‖2

2 + D2‖v‖2, which implies ‖v‖2 = 0. When τ > 0, the inequality

‖Av‖2 = ‖Axopt −Ax̄‖2 ≤ ‖Axopt − b‖2 + ‖Ax̄− b‖2 ≤ 2τ

implies

‖v‖2 ≤
√

D2
2 + 8D1τ −D2

2D1
.

The assertion is proved. �
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Remark 3.2. The robust recovery result (3.11) is always better than (3.4) in Theorem 3.1 due to the sub-
additivity of the square root function. Under the conditions of Proposition 3.1, the bound (3.11) for the 
springback-penalized model (1.5) is tighter than (3.8) in the sense of

√
D2

2
4D2

1
+ 2

D1
τ − D2

2D1
< Csτ,

if the level of noise τ satisfies

τ >
2 −D2Cs

D1C2
s

=
(

1 − D2Cs

2

)
2

D1C2
s

.

Comparing with (3.10), this improvement enlarges the value range of τ . For example, if Cs is the coefficient 
in the result (3.1) of the BP model (1.3), then 1 −D2Cs/2 is approximately 0.2679.

4. Springback-penalized model for nearly sparse signal recovery

We then study the stable recovery of the springback-penalized model (1.5) when x̄ is nearly sparse and 
the measurements are noisy.

4.1. Recovery guarantee using the springback-penalized model

If the signal x̄ to be recovered is nearly s-sparse, then we have the following stable recovery theorem for 
the springback-penalized model (1.5).

Theorem 4.1 (Recovery of nearly sparse signals). Let x̄ ∈ Rn be an unknown vector to be recovered. For a 
given sensing matrix A ∈ Rm×n, let b ∈ Rm be a vector of measurements from b = Ax̄+e with ‖e‖2 ≤ τ , and 
let δ3s and δ4s be the 3s- and 4s-RIC’s of A, respectively. Let x̄s ∈ Rn be the truncated vector corresponding 
to the s largest values of x̄ (in absolute value). Suppose A satisfies δ3s < 3(1 − δ4s) − 1 and α satisfies (3.3), 
then the minimizer xopt of the problem (1.5) satisfies

‖xopt − x̄‖2 ≤
√

2
D1

τ + 4
α
‖x̄− x̄s‖1, (4.1)

where D1 is the constant (3.5) given in Theorem 3.1.

Proof. Let xopt = x̄+ v, and Λ0 be the support of x̄s. It is clear that vΛ0 = xopt
Λ0

− x̄s and vΛc
0 = xopt

Λc
0
− x̄Λc

0 . 
We know that

‖xopt‖1 −
α

2 ‖x
opt‖2

2 ≤ ‖x̄‖1 −
α

2 ‖x̄‖
2
2 = ‖x̄s‖1 + ‖x̄Λc

0‖1 −
α

2 ‖x̄‖
2
2.

On the other hand, it holds that

‖xopt‖1 −
α

2 ‖x
opt‖2

2 = ‖x̄s + vΛ0‖1 + ‖x̄Λc
0 + vΛc

0‖1 −
α

2 ‖x̄ + v‖2
2

≥ ‖x̄s‖1 − ‖vΛ0‖1 + ‖vΛc
0‖1 − ‖x̄Λc

0‖1 −
α

2
(
‖x̄‖2

2 + 2 〈x̄, v〉 + ‖v‖2
2
)
.

Then, v satisfies the following estimation:

‖vΛc
0‖1 ≤‖vΛ0‖1 + 2‖x̄− x̄s‖1 −

α

2 ‖v‖
2
2 + α‖v‖2

2 + α 〈x̄, v〉

=‖vΛ0‖1 + 2‖x̄− x̄s‖1 −
α‖v‖2

2 + α
〈
xopt, v

〉
.
2
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We divide Λc
0 into subsets of size 3s, Λc

0 = Λ1
⋃

Λ2
⋃

· · ·
⋃

Λ�, in terms of decreasing order of magnitudes 
(in absolute value) of vΛc

0 . Denoting Λ01 = Λ0
⋃

Λ1 and using the RIP of A, we have

‖Av‖2 ≥ ‖AΛ01vΛ01‖2 −
∥∥∥∥∥

�∑
i=2

AΛi
vΛi

∥∥∥∥∥
2

≥
√

1 − δ4s‖vΛ01‖2 −
√

1 + δ3s

�∑
i=2

‖vΛi
‖2.

As proved for Theorem 3.1, we have 
∑�

i=2 ‖vΛi
‖2 ≤ ‖vΛc

0‖1/
√

3 and ‖vΛ0‖1 ≤ √
s‖vΛ01‖2. Thus, we obtain

�∑
i=2

‖vΛi
‖2 ≤ 1√

3s

(√
s‖vΛ01‖2 + 2‖x̄− x̄s‖1 −

α

2 ‖v‖
2
2 + α

〈
xopt, v

〉)
.

Furthermore, it holds that

‖Av‖2 ≥
(√

1 − δ4s −
√

1 + δ3s
√
s√

3s

)
‖vΛ01‖2 −

2
√

1 + δ3s√
3s

‖x̄− x̄s‖1

+ α
√

1 + δ3s

2
√

3s
‖v‖2

2 −
α
√

1 + δ3s√
3s

〈
xopt, v

〉
.

(4.2)

As

‖v‖2 ≤ ‖vΛ01‖2 +
�∑

i=2
‖vΛi

‖2

≤
(

1 +
√
s√
3s

)
‖vΛ01‖2 + 2√

3s
‖x̄− x̄s‖1 −

α

2
√

3s
‖v‖2

2 + α√
3s

〈
xopt, v

〉
,

we have

‖vΛ01‖2 ≥
√

3s√
3s +

√
s

(
α

2
√

3s
‖v‖2

2 + ‖v‖2 −
α√
3s

〈
xopt, v

〉
− 2√

3s
‖x̄− x̄s‖1

)
.

Recall the assumption δ3s < 3(1 − δ4s) − 1. The coefficient of ‖vΛ01‖2 in (4.2) is positive, and it follows that

‖Av‖2 ≥
√

1 − δ4s
√

3s−
√

1 + δ3s
√
s√

3s +
√
s

(
α

2
√

3s
‖v‖2

2 + ‖v‖2 −
α√
3s

〈
xopt, v

〉
− 2√

3s
‖x̄− x̄s‖1

)

+α
√

1 + δ3s

2
√

3s
‖v‖2

2 −
α
√

1 + δ3s√
3s

〈
xopt, v

〉
− 2

√
1 + δ3s√

3s
‖x̄− x̄s‖1

= α

2

(√
1 − δ4s +

√
1 + δ3s√

3s +
√
s

)
‖v‖2

2 +
√

1 − δ4s
√

3s−
√

1 + δ3s
√
s√

3s +
√
s

‖v‖2 (4.3)

−α

(√
1 − δ4s +

√
1 + δ3s√

3s +
√
s

)〈
xopt, v

〉
− 2

(√
1 − δ4s +

√
1 + δ3s√

3s +
√
s

)
‖x̄− x̄s‖1.

If 〈xopt, v〉 ≤ 0, then ‖Av‖2 ≥ D1‖v‖2
2 − 4

αD1‖x̄ − x̄s‖1. If 〈xopt, v〉 > 0, then the condition (3.3) on α
guarantees

√
1 − δ4s

√
3s−

√
1 + δ3s

√
s√

3s +
√
s

‖v‖2 − α

(√
1 − δ4s +

√
1 + δ3s√

3s +
√
s

)〈
xopt, v

〉
≥ 0,

which is shown in the proof of Theorem 3.1. Hence, we also have ‖Av‖2 ≥ D1‖v‖2
2 − 4

αD1‖x̄ − x̄s‖1. As 
‖Av‖2 = ‖Axopt −Ax̄‖2 ≤ ‖Axopt − b‖2 + ‖Ax̄− b‖2 ≤ 2τ , we have
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2τ ≥ D1‖v‖2
2 −

4
α
D1‖x̄− x̄s‖1,

which implies (4.1). �
Similar to the improvement in Proposition 3.1, the above stable recovery result can be improved as 

follows.

Proposition 4.1. Let x̄ ∈ Rn be an unknown vector to be recovered. For a given sensing matrix A ∈ Rm×n, 
let b ∈ Rm be a vector of measurements from b = Ax̄ + e with ‖e‖2 ≤ τ , and let δ3s and δ4s be the 3s- and 
4s-RIC’s of A, respectively. Let xopt be the minimizer of the problem (1.5) and assume 〈xopt, xopt − x̄〉 ≤ 0. 
Let x̄s ∈ Rn be the truncated vector corresponding to the s largest values of x̄ (in absolute value). Suppose 
A satisfies δ3s < 3(1 − δ4s) − 1, then xopt satisfies

‖xopt − x̄‖2 ≤
√

D2
2

4D2
1

+ 2
D1

τ + 4
α
‖x̄− x̄s‖1 −

D2

2D1
,

where D1 and D2 are the constants (3.5) and (3.12) given in Theorem 3.1 and Proposition 3.1, respectively.

Proof. In the case of 〈xopt, v〉 ≤ 0, it follows straightforwardly from the estimation (4.3) that

‖Av‖2 ≥ D1‖v‖2
2 + D2‖v‖2 −

4
α
D1‖x̄− x̄s‖1.

The assumption δ3s < 3(1 − δ4s) − 1 guarantees D2 > 0. Therefore, it follows from the triangle inequality 
that

‖Av‖2 = ‖Axopt −Ax̄‖2 ≤ ‖Axopt − b‖2 + ‖Ax̄− b‖2 ≤ 2τ.

We thus have

D1‖v‖2
2 + D2‖v‖2 −

4
α
D1‖x̄− x̄s‖1 ≤ 2τ, (4.4)

which gives the improved result by solving the system of inequalities (4.4) and ‖v‖2 ≥ 0. �
4.2. On the stable recovery

If x̄ is known to be s-sparse, then the estimation (4.1) in Theorem 4.1 is reduced to (3.4) in Theorem 3.1; 
and if the measurements are additionally noise-free, then both the estimations (3.4) and (4.1) imply exact 
recovery of the signal x̄. We compare the estimation (4.1) with the estimation (3.2) for the BP model (1.3). 
The following comparison is based on theoretical error bounds. We are interested in the case where the 
estimation (4.1) is tighter than the estimation (3.2) in the sense of

√
2
D1

τ + 4
α
‖x̄− x̄s‖1 ≤ C1,sτ + C2,s

‖x̄− x̄s‖1√
s

, (4.5)

which is equivalent to

s1/4
√
α

√
4(
√

3 + 1)√ √ τ + 4‖x̄− x̄s‖1√
s

≤ C1,sτ + C2,s
‖x̄− x̄s‖1√

s
. (4.6)
1 − δ4s + 1 + δ3s
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Note that s takes values among {1, 2, . . . , n} and the right-hand side of (4.6) decreases as s increases. If the 
left-hand side of (4.6) is smaller than the right-hand side of (4.6) for s = 1 and the left-hand side is larger 
than the right-hand side for s = n, then there must exist a constant C such that the inequality (4.5) holds 
for s ≤ C. Besides, if x̄ is known to be s-sparse, then ‖x̄− x̄s‖1 = 0 and thus (4.6) implies the existence of 
C without any assumption. Therefore, we have the following corollary.

Corollary 4.1. If x̄ is s-sparse, then there exists a constant C such that the inequality (4.5) holds for s ≤ C, 
where

C = α2C4
1,sτ

2
(√

1 − δ4s +
√

1 + δ3s

4(
√

3 + 1)

)2

. (4.7)

When no information of the sparsity of x̄ is known, if α satisfies

4(
√

3+1)√
1−δ4+

√
1+δ3

τ + 4‖x̄− x̄1‖1

(C1,1τ + C2,1‖x̄− x̄1‖1)2
≤ α ≤ 1

C2
1,nτ

4(
√

3 + 1)
√
n√

1 − δ4n +
√

1 + δ3n
,

then there exists a constant C such that the inequality (4.5) holds for s ≤ C, where C depends on α, x̄, τ , 
δ3s, and δ4s.

In virtue of random matrix theory, we give two examples to show that the condition δ3s < 3(1 − δ4s) − 1
on A in Theorems 3.1 and 4.1 holds.

• Random Gaussian matrices: the entries of A are i.i.d. Gaussian with mean zero and variance 1/m. It 
was shown in [6,7] that the condition δ3s < 3(1 − δ4s) − 1 holds with overwhelming probability when 
s ≤ C ′m/ log(n/m), where C ′ is a constant. Similar results were extended to sub-gaussian matrices in 
[30].

• Fourier ensemble: A is obtained by selecting m rows from the n × n discrete Fourier transform and 
renormalizing the columns so that they are unit-normed. If the rows are selected at random, the condition 
δ3s < 3(1 − δ4s) −1 holds with overwhelming probability for s ≤ C ′m/(log(n))4, where C ′ is a constant. 
This was initially considered in [8] and then improved in [36].

Remark 4.1. Assume that α satisfies the conditions in Theorem 4.1 and Corollary 4.1. For a random Gaussian 
sensing matrix A, if s ≤ C ′m/ log(n/m), then the RIP condition δ3s < 3(1 − δ4s) − 1 on A holds with high 
probability; and additionally if, C ′m/ log(n/m) ≤ C, i.e.,

m exp
(
C ′

C
m

)
≤ n,

then the estimation (4.1) is tighter than the estimation (3.2) in the sense of (4.5). For a randomly subsampled 
Fourier sensing matrix A, if s ≤ C ′m/(log(n))4, then the RIP condition on A holds with overwhelming 
probability; and additionally if C ′m/(log(n))4 ≤ C, i.e.,

m ≤ C

C ′ (log(n))4,

then the estimation (4.1) is tighter than the estimation (3.2) in the sense of (4.5). In a nutshell, for a sensing 
matrix satisfying the RIP condition, if the number m of observation data is limited, where “limited” can 
be characterized as the fact that m is less than some constant depending on n, C, and C ′, then the stable 
recovery using the springback-penalized model (1.5) is guaranteed by a tighter bound than that of BP model 
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(1.3) in the sense of (4.5). These results can be extended to general orthogonal sensing matrices [8]. Similar 
comparative results with other recovery models may also be derived if the recovery error bounds of these 
models are linear to τ and ‖x̄− x̄s‖1, e.g., the �1−2-penalized model [44].

5. Computational aspects of the springback-penalized model

Now we focus on computational aspects for the springback-penalized model (1.5). We first design an 
algorithm for solving (1.5) in Section 5.1, and then discuss its convergence in Section 5.2 and elaborate on 
how to solve its subproblems in Section 5.3.

5.1. DCA-springback: an algorithm for the springback penalized model

Some well-developed algorithms for solving difference-of-convex (DC) optimization problems can be easily 
implemented to solve the springback-penalized model (1.5). We focus on the simplest DCA in [39,40] without 
any line-search step, which has been shown to be efficient for solving signal recovery problems, see, e.g., 
[24,45,48].

Recall a standard DC optimization problem

min
x∈Rn

f(x) := g(x) − h(x), (5.1)

where g and h are lower semicontinuous proper convex functions on Rn. Here, f is called a DC function, 
and g − h is a DC decomposition of f . At each iteration, the DCA replaces the concave part −h with a 
linear majorant and solves the resulting convex problem. That is, the DCA generates a sequence {xk} by 
solving the following subproblem iteratively:

xk+1 ∈ arg min
x∈Rn

{
g(x) − 〈x− xk, ξk〉

}
,

where ξk ∈ ∂(h(xk)). Note that the springback-penalized model (1.5) can be written as

arg min
x∈Rn

F (x) := (‖x‖1 + χΩ(x)) − α

2 ‖x‖
2
2, (5.2)

where Ω := {x ∈ Rn : ‖Ax − b‖2 ≤ τ} and

χΩ(x) :=
{

0, x ∈ Ω,

+∞, x /∈ Ω,

is the indictor function of the set Ω. Thus, the DCA iterate scheme for solving (5.2) reads as

xk+1 ∈ arg min
x

{
(‖x‖1 + χΩ(x)) − 〈x− xk, ξk〉

}
= arg min

x

{
‖x‖1 − 〈x− xk, ξk〉 s.t. x ∈ Ω

}
.

More specifically, the resulting DCA is listed in Algorithm 1, where εouter > 0 is the preset tolerance for 
iterations, and “MaxIt” means the maximal number of iterations set beforehand.
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Algorithm 1: DCA-springback: Solving the constrained springback model (1.5) via DCA.
Input: Model parameters: α > 0 satisfying the condition (5.6);
Stopping criterion: εouter > 0, MaxIt > 0;
Initialization: k = 0, x0 satisfying ‖Ax − b‖2 ≤ τ ;

1 while k < MaxIt and min
{
‖xk+1 − xk‖2, ‖xk+1 − xk‖2/‖xk‖2

}
> εouter do

2 ξk = αxk;
3 xk+1 ∈ arg min

x

{
‖x‖1 −

〈
x − xk, ξk

〉
s.t. ‖Ax − b‖2 ≤ τ

}
;

4 k ← k + 1;
5 end

5.2. Convergence

Recall that the modulus of strong convexity of a convex function f on Rn, denoted by d(f), is defined as 
d(f) := sup{ν > 0 : f(·) − ν

2‖ · ‖2
2 is convex on Rn}. Then, according to [40, Proposition A.1], for a general 

DC function f = g − h, any sequence {xk} generated by the DCA satisfies

f(xk) − f(xk+1) ≥ d(g) + d(h)
2 ‖xk+1 − xk‖2

2, (5.3)

which immediately implies the decreasing property of {f(xk)} if at least one of g and h is strongly convex. 
Note that α2 ‖x‖2

2 is strongly convex with modulus α. Thus, starting with a feasible x0, we have the decreasing 
property

F (xk) − F (xk+1) ≥ α

2 ‖x
k+1 − xk‖2

2, (5.4)

where F is defined as (5.2). However, the decreasing property (5.4) of F is not sufficient to ensure the 
convergence of DCA-springback. The function F could be negative if α is inappropriately large. Note that 
for any xk, we have

‖Axk‖2 − ‖b‖2 ≤ ‖Axk − b‖2 ≤ τ.

Moreover, as A is assumed to be full rank, we have σmin(A) > 0. It follows from the geometric interpretation 
of the SVD [42, Lecture 4] that ‖Ax‖2 ≥ σmin(A) for any x ∈ Rn on the unit sphere {x ∈ Rn : ‖x‖2 = 1}. 
Thus, it holds that

0 < σmin(A) ≤ min
x∈Rn

‖Ax‖2

‖x‖2
= min

‖x‖2=1
‖Ax‖2,

and we have

‖xk‖2 ≤ ‖b‖2 + τ

σmin(A) . (5.5)

Note that ‖x‖1 − α
2 ‖x‖2

2 ≥ 0 and hence F is non-negative if ‖x‖2 ≤ 2/α. Clearly, if

α ≤ 2σmin(A)
‖b‖2 + τ

, (5.6)

then F (xk) ≥ 0 for any k ≥ 0 because all iterates xk satisfy (5.5). Together with the decreasing property 
(5.4), we can establish the convergence of DCA-springback easily by following the analytical framework in 
[39,40]. Moreover, it follows the convergence of {F (xk)} and (5.4) that ‖xk+1 − xk‖2 → 0 as k → ∞.
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Remark 5.1. Note that the condition (3.3) depends on the RIP condition of A, and (5.6) depends on the 
conditioning of A. It is easy to deduce that if

√
1 − δ4s

√
3s−

√
1 + δ3s

√
s√

1 − δ4s +
√

1 + δ3s
≤ 2σmin(A)‖xopt‖2

‖b‖2 + τ
, (5.7)

then the condition (5.6) is implied by (3.3). Otherwise, it can be verified that the condition (3.3) is implied 
by (5.6).

5.3. Solving the subproblem of DCA-springback

For the proposed DCA-springback, its subproblem at each iteration is

min
x

‖x‖1 −
〈
x− xk, ξk

〉
s.t. ‖Ax− b‖2 ≤ τ. (5.8)

This problem can be easily solved by, e.g., the ADMM, which was originally proposed in [20] and had been 
well developed in the literature such as [11,22]. Some details are given for completeness. Note that the 
subproblem (5.8) can be reformulated as

min
x,y,z

‖y‖1 − 〈x− xk, ξk〉

s.t. y = x,

z = Ax− b,

z ∈ B(τ),

where y, z ∈ Rn are two auxiliary variables. With some trivial details skipped, the iterative scheme of the 
(scaled) ADMM for the subproblem (5.8) reads as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xj+1 = (ρATA + ζI)−1 (ρAT(b + zj − ηj) + ξk + ζ(yj − uj)
)
,

yj+1
i = soft(xj+1

i + uj
i ; 1/ζ) for i = 1, . . . , n,

zj+1 = PB(τ)(Axj+1 − b + ηj),
uj+1 = uj + xj+1 − yj+1,

ηj+1 = ηj+1 + Axj+1 − b− zj+1,

(5.9)

where u ∈ Rn and η ∈ Rm are the Lagrange multipliers, ζ > 0 and ρ > 0 are penalty parameters, and 
PB(τ)(·) is the projection operator onto the ball B(τ). If the measurement process is noise-free, i.e., τ = 0, 
then zj is always set as zero and the projection of the z-subproblem in (5.9) is not necessary.

6. Numerical experiments

In this section, we implement the DCA-springback to the constrained springback-penalized model (1.5)
with simulated data. All codes were written by MATLAB R2022a, and all numerical experiments were 
conducted on a laptop (16 GB RAM, Intel® CoreTM i7-9750H Processor) with macOS Monterey 12.4.

We mainly show the effectiveness of the model (1.5) for some specific scenarios and demonstrate the 
efficiency of the DCA-springback. Several state-of-the-art signal recovery solvers listed below are also tested 
for comparison.
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1) The accelerated iterative hard thresholding (AIHT) algorithm in [2]: solving the constrained model

min
x∈Rn

‖Ax− b‖2
2 s.t. ‖x‖0 ≤ s

by the accelerated iterative hard thresholding, where s is set beforehand to estimate the sparsity of x. 
For simplicity, we only choose the fundamental AIHT in [2], and refer to, e.g., [16,23,25,26,33,34], for 
various other more sophisticated algorithms.

2) ADMM-�1 [20]: solving the unconstrained �1-penalized problem by the ADMM.
3) IRLS-�p (0 < p < 1) [28]: smoothing the unconstrained �p-penalized model as

min
x∈Rn

1
2‖Ax− b‖2

2 + λ‖x‖pp,ε with ‖x‖pp,ε :=
n∑

j=1
(x2

j + ε2)p/2,

where ε > 0, and implementing the iteratively reweighted least squares (IRLS) algorithm.
4) DCA-TL1 [48]: solving the unconstrained transformed �1-penalized model with parameter β by DCA 

and implementing the ADMM for its subproblems.
5) DCA-�1−2 [45]: solving the unconstrained �1−2-penalized model by DCA and implementing the ADMM 

for its subproblems.
6) DCA-MCP [38]: solving the unconstrained MCP-penalized model by DCA and implementing the ADMM 

for its subproblems (the authors in [38] consider the �1-norm data fidelity term instead of the �2 norm, 
but the implementation of the MCP term is similar).

Note that the AIHT solves the �0-penalized model directly; the ADMM-�1 solves a convex surrogate 
model, and the others solve different non-convex approximate models.

6.1. Setup

We consider both incoherent and coherent sensing matrices to generate synthetic data for simulation. 
In the incoherent regime, we use random Gaussian matrices and random partial discrete cosine transform 
(DCT) matrices. For the former kind, its columns are generated by

Ai
i.i.d.∼ N (0, Im/m), i = 1, . . . , n,

where N (0, Im/m) is the multivariate Gaussian distribution with location 0 and covariance Im/m. For the 
latter kind, its columns are generated by

Ai = 1√
m

cos(2iπχi), i = 1, . . . , n,

where χi ∈ Rm i.i.d.∼ U([0, 1]m) is uniformly and independently sampled from [0, 1]. Note that both kinds of 
matrices have small RIP constants with high probability. The coherent regime consists of more ill-conditioned 
sensing matrices with higher coherence, and it is represented by the randomly oversampled partial DCT 
matrix in our experiments. A randomly oversampled partial DCT matrix is defined as

Ai = 1√
m

cos(2iχi/F), i = 1, . . . , n,

where F ∈ N is the refinement factor. As F increases, A becomes more coherent. A matrix sampled in 
this way cannot satisfy an RIP, and the sparse recovery with such a matrix is possible only if the non-zero 
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elements of the ground-truth x̄ are sufficiently separated. Technically, we select the elements of supp(x̄)
such that minj,k∈supp(x̄) |j − k| ≥ L, where L is characterized as the minimum separation.

We generate a ground-truth vector x̄ ∈ Rn with sparsity s supported on a random index set (for incoherent 
matrices) or an index set satisfying the required minimum separation (for coherent matrices) with non-zero 
entries i.i.d. drawn from the normal distribution. We then compute b = Ax̄ as the measurements, and 
apply each solver to produce a reconstruction vector x∗ of x̄. A reconstruction is considered successful if the 
relative error satisfies ‖x∗ − x̄‖2/‖x̄‖2 < 10−3. We test some cases with different sparsity s of x̄, different 
levels of noise, or different numbers of measurements. We run 100 times independently for each scenario 
and report the success rate, which is the ratio of the number of successful trials over 100. All experiments 
are run in parallel with the MATLAB Parallel Computing Toolbox.

The initial guess for all tested algorithms is x0 = 0. The choice of the parameter α in the springback 
penalty is discussed in Section 6.2. For outer iterates of the DCA-springback, we set ρ = 105, MaxIt = 10, 
and εouter = 10−5 (for noise-free measurements) or 10−3 (for noisy measurements). To implement the 
ADMM (5.9) for subproblems, we set ζ = 10−5, τ = ‖Ax̄− b‖2, and the stopping criterion as either ‖xj+1−
xj‖2/ max{‖xj+1‖2, ‖xj‖2} < 10−5 or the iteration number exceeds 500. The DCA-TL1, the DCA-�1−2, 
and the DCA-MCP are solved by DCA and their subproblems are also solved by the ADMM. We thus set 
the regularization parameter λ = 10−6 and adopt the same parameters of the rest and stopping criterion 
as the DCA-springback. In particular, the parameter β in the transformed �1 penalty is set as 1 for the 
DCA-TL1, following [48], and the parameter μ in the MCP is set as 1/α for the DCA-MCP. For the AIHT, 
we set all parameters as [2]. For the ADMM-�1, we set λ = 10−6, ζ = 10−5, εouter = 10−5 (for noise-
free measurements) and 10−3 (for noisy measurements), and MaxIt = 5000. For IRLS-�p, we set p = 0.5, 
λ = 10−6, εouter = 10−8, and MaxIt = 1000.

6.2. A subroutine for choosing the model parameter α

Let us focus on the parameter α of the springback penalty (1.4). For an 128 × 512 random Gaussian 
matrix, we test the DCA-springback with different α varying among {0.2, 0.4, 0.6, 0.8, 1}, and different 
levels of sparsity s among {25, 27, . . . , 65}. The DCA-springback with α = 0.6 or 0.8, indicated by success 
rates in Fig. 2, has the best performance. For small α such as 0.2 and 0.4, the DCA-springback is not 
satisfactory because the springback penalty performs similarly to the �1 penalty. For α = 1, its performance 
is also inferior since the convergence condition of the DCA-springback or the posterior verification (3.3) can 
be easily violated with a large α. We refer to the latter reason as the “violating behavior” of the DCA-
springback. An “unsuccessful” trial is recognized due to unsatisfactory (but reasonable) recovery or violating 
behavior. Thus, success rates cannot fully reflect “violating behavior,” and we also plot the relative errors in 
Fig. 2. Indeed, the “violating behavior” often occurs when s becomes large. Performance of α = 0.8 and 1 is 
generally inferior, and also there are few such cases when α = 0.6. Thus, we adopt a safeguard for α = 0.7, 
a compromise between 0.6 and 0.8. If α = 0.7 violates the condition (5.6), then we replace 0.7 with the 
largest constant complying with this condition (5.6). That is, we choose α = min {0.7, 2σmin(A)/(‖b‖2 + τ)}. 
Success rates and relative errors with safeguarded α = 0.7 are also displayed in Fig. 2, indicating that 
there is no violating behavior.

Though a reasonable upper bound of α is needed, behaviors for α = 0.2 and 0.4 suggest that a lower 
bound for α should be taken to maintain the satisfactory performance of the DCA-springback in terms of 
success rates. Especially if A is ill-conditioned in the sense that its singular values lie within a wide range of 
values, i.e., σmin(A) could be very small, then the condition on α could be pretty stringent. To maintain the 
success rates of the DCA-springback, we adopt an efficiency detection step as follows. If the condition 
number cond(A) := σmax(A)/σmin(A) is greater than 5 (or other values set by the user), then we start an
efficiency detection to enforce α to be greater than an efficiency detection factor ω. Thus, we suggest 
choosing α as the following subroutine:
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Fig. 2. Success rates and relative errors in a natural logarithmic scale of recovery using DCA-springback under 128 × 512 random 
Gaussian sensing matrix, with various α.

α =
{

min {0.7, 2σmin(A)/(‖b‖2 + τ)} , if cond(A) ≤ 5,
max {ω,min{0.7, 2σmin(A)/(‖b‖2 + τ)}} , otherwise.

(6.1)

In short, the safeguard step suffices to guarantee convergence of the DCA-springback; and the efficiency 
detection step is adopted to maintain the success rates of the DCA-springback for ill-conditioned sensing 
matrices.

6.3. Exact recovery of sparse vectors

We first compare the DCA-springback with some state-of-the-art solvers mentioned above for noise-free 
measurements. We consider both the incoherent and coherent sensing matrices, respectively.

Tests on incoherent matrices. We first consider a ground-truth vector and display its reconstructions by 
the ADMM-�1, the DCA-TL1, the DCA-�1−2, the DCA-MCP, and the DCA-springback. Let the sensing 
matrix A ∈ Rm×n be a random Gaussian matrix with (m, n) = (64, 250), and the ground-truth x̄ ∈ R250 be 
a 22-sparse vector with nonzero entries drawn from the standard normal distribution and set the efficiency 
detection factor as ω = 0.5. The ground-truth and its reconstructions are displayed in Fig. 3. We see that 
the DCA-springback, the DCA-MCP, and the DCA-TL1 produce better reconstructions than the ADMM-�1
and the DCA-�1−2.

We then conduct a more comprehensive study and involve more solvers. We choose the sensing matrix 
A ∈ Rm×n as a random Gaussian matrix and random partial DCT matrices with (m, n) = (64, 160), 
(64, 320), and (64, 640), and set the efficiency detection factor as ω = 0.5. Different levels of sparsity s
varying among {6, 8, 10, . . . , 40} are tested. The success rates of each solver are plotted in Fig. 4. For both 
the Gaussian and partial DCT matrices, the IRLS-�p with p = 0.5 has the best performance, followed by 
the DCA-TL1, the DCA-MCP, and the DCA-springback. In particular, the performances of the DCA-MCP 
and the DCA-springback are very close because we let the parameter μ in the MCP be 1/α. The DCA-�1−2
performs moderately well, outperforming both the ADMM-�1 and the AIHT. Our numerical results are 
consistent with some observations in the literature (e.g., [45,48]).

Tests on coherent matrices. Now, we choose the sensing matrix A ∈ R100×1500 as a randomly oversampled 
partial DCT matrix with various refinement factors F = 4, 6, 8, 10, 12, 16 and minimum separation L = 2F , 
with the sparsity s varying among {5, 7, 9, . . . , 35}. The efficiency detection factor is set as ω = 0.5. The 
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Fig. 3. A ground-truth and its reconstructions using random Gaussian sensing matrices and noise-free measurements.

Fig. 4. Success rates using random Gaussian and partial DCT sensing matrices.

success rates of each solver are plotted in Fig. 5. This figure suggests that the DCA-TL1, the DCA-MCP, 
and the DCA-springback are robust regardless of the varying coherence of sensing matrix A. Moreover, when 
the coherence of A is modest, e.g. F = 6, 8, the DCA-MCP and the DCA-springback perform better than 
others. In the coherent regime, the DCA-springback is comparable with the DCA-�1−2, and it outperforms 
the DCA-TL1, the ADMM-�1, the IRLS-�p, and the AIHT. However, the best-performance solver IRLS-�p
in the incoherent regime becomes inefficient as A becomes coherent.
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Fig. 5. Success rates using randomly oversampled partial DCT matrices in R100×1500.

6.4. Robust recovery in the presence of noise

We then consider noisy measurements. The noisy measurements b are obtained by b = awgn(Ax̄,snr), a 
subroutine of the MATLAB Communication Toolbox, where snr corresponds to the value of signal-to-noise 
ratio (SNR) measured in dB. The larger the value of SNR is, the lighter the noise is added on.

We first consider a ground-truth vector with noisy measurements and display its reconstructions by the 
ADMM-�1, the DCA-TL1, the DCA-�1−2, the DCA-MCP, and the DCA-springback. Let the sensing matrix 
A ∈ Rm×n be a random Gaussian matrix with (m, n) = (64, 250), and the ground-truth x̄ ∈ R250 be a 
20-sparse vector with nonzero entries drawn from the standard normal distribution and set the efficiency 
detection factor as ω = 0.4. The measurement vector b = Ax̄ is contaminated by 30 dB noise. The ground-
truth and its reconstructions are displayed in Fig. 6. In particular, we see that the DCA-springback works 
better on small perturbations than the other solvers.

We test both the random Gaussian matrix and the randomly oversampled partial DCT matrix with 
different levels of noise in dB. For Gaussian measurements, we choose n = 64, m = 128, and s = 25. For 
the oversampled partial DCT measurements, we test n = 1500, m = 128, s = 30, and F = 8. We run 100 
times for each scenario and record the average errors. The efficiency detection factor is set as ω = 0.4.

Once we adopt the efficiency detection step, a single “violating behavior” could lift the mean error 
to a pretty large level. To overcome this computational myopia, we only reserve the accepted results, where 
a result of the DCA-springback is considered “accepted” if the absolute error ‖x∗ − x̄‖2 is ten times less 
than the absolute error of the ADMM-�1. In addition to errors displayed in Fig. 7, we report the acceptance 
rates of the DCA-springback, which are ratios of the number of accepted trials over 100.

According to our experiments, there are no “violating behaviors” with the Gaussian measurements. How-
ever, there are a few cases with the oversampled partial DCT measurements when the noise level is relatively 
large. To illustrate the necessity of the efficiency detection step and to validate the convergence condi-
tion (5.6), we test the DCA-springback without the efficiency detection for the randomly oversampled 
partial DCT measurements, and we do not remove unaccepted trials. The results are labeled as “DCA-
springback w/o effcy det.” in Fig. 7, as we see that the DCA-springback only performs slightly better than 
the ADMM-�1.
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Fig. 6. A ground-truth and its reconstructions using random Gaussian sensing matrices and noisy measurements.

Fig. 7. Robust recovery results with randomly Gaussian and oversampled partial DCT measurements.

Fig. 7 shows that the DCA-�1−2 and the IRLS-�p are still sensitive to the coherence of A. For Gaussian 
measurements, the IRLS-�p with p = 0.5 has the best performance, followed by the DCA-TL1, the DCA-
MCP, the DCA-springback, the DCA-�1−2, and the ADMM-�1. For oversampled DCT measurements, the 
DCA-springback appears to be the best solver, followed by the DCA-MCP, the DCA-�1−2, and the DCA-
TL1, because the noise level is considered in solving the subproblems of the DCA-springback. In both cases, 
the DCA-springback consistently performs better than the ADMM-�1 and the DCA-�1−2. AIHT appears not 
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Fig. 8. Numerical validation of theoretical results in Section 4.2.

to perform well for both matrices. According to the plots of the DCA-springback and the DCA-springback 
without the efficiency detection, the model parameter α matters for the same solver.

We also validate some theoretical results proved in Section 4.2, with Gaussian measurements perturbed 
by 45 dB noise. We first study m = 50, n = 160, and s varying among {10, 11, . . . , 40}, and then consider 
n = 160, s = 20, and m varying among {50, 51, . . . , 120}. Errors of the ADMM-�1, the DCA-�1−2, and the 
DCA-springback are plotted in Fig. 8, and the acceptance rates of the DCA-springback are also displayed. 
According to our analysis in Section 4.2, for an RIP sensing matrix A and an s-sparse x̄, when s ≤ C (C is 
given in (4.7)) or m is limited by some constant, the estimation (4.1) of the springback-penalized model is 
tighter than the estimation (3.2) of the �1- and �1−2-penalized models in the sense of (4.5). We see in the 
left plot of Fig. 8 that the error of the DCA-springback is less than the others for small s, and it becomes 
larger than the others when s exceeds some constant. The right plot also indicates that the error of the 
DCA-springback is less than the others when m is relatively small.

6.5. Remarks on numerical results

As observed in the literature, recovery results by different models may vary for different scenarios, and 
no one can unanimously outperform all the others for all scenarios. For instance, the IRLS-�p prevails in 
the incoherent regime but quickly fails in the coherent regime, see [28,45]. For incoherent sensing matrices, 
the IRLS-�p and the DCA-TL1 perform better than the DCA-�1−2 and the ADMM-�1, while the DCA-�1−2

performs the best for coherent sensing matrices; see [45,48]. The DCA-TL1 is robust, and it performs well 
for both incoherent and coherent sensing matrices, while it is less efficient than either the IRLS-�p in the 
incoherent regime or the DCA-�1−2 in the coherent regime.

Together with these known facts and our numerical observations, we have the following remarks on the 
numerical performance of the DCA-springback.

• For an incoherent sensing matrix: the DCA-springback performs slightly worse than the IRLS-�p and 
the DCA-TL1;

• For a coherent sensing matrix: the DCA-springback performs slightly worse than the DCA-�1−2 but 
better than the DCA-TL1.

• For a sensing matrix with modest coherence: the DCA-springback performs comparably with the DCA-
MCP, and they perform better than the others.
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Similar comparison results are also observed when the measurements are contaminated by some noise. For 
all the three scenarios, the DCA-springback and the DCA-MCP perform comparably if the parameter μ of 
the MCP is set as 1/α, and their performances with well-tuned parameters are also comparable. Moreover, 
we see that only the DCA-springback, the DCA-MCP, and the DCA-TL1 are robust with respect to the 
coherence of the sensing matrix. The DCA-springback and the DCA-MCP perform better than the DCA-
TL1 in the coherent regime but worse in the incoherent regime. When the coherence of the sensing matrix 
is unknown, for example, when the sensing hardware cannot be modified or upgraded, coherence-robust 
algorithms such as the DCA-springback and the DCA-MCP are preferred for signal recovery.

7. Conclusion

We proposed a weakly convex penalty, named the springback penalty, for signal recovery from incomplete 
and inaccurate measurements. The springback penalty inherits major theoretical and numerical advantages 
from the convex �1 penalty and its various non-convex alternatives. We established exact and stable recovery 
results for the springback-penalized model (1.5) under the same RIP condition as the BP model (1.3); both 
the sparse and nearly sparse signals are considered. The springback-penalized model (1.5) is particularly 
suitable for signal recovery with a large level of noise or a limited number of measurements. We verified the 
effectiveness of the model and its computational tractability. The springback penalty provides a new tool 
to construct effective models for various sparsity-driven recovery problems arising in many areas such as 
compressed sensing, signal processing, image processing, and least-squares approximation.
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