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Abstract
This paper is concerned with the introduction of Tikhonov regularization into
least squares approximation scheme on [−1, 1] by orthonormal polynomials,
in order to handle noisy data. This scheme includes interpolation and hyperin-
terpolation as special cases. With Gauss quadrature points employed as nodes,
coefficients of the approximation polynomial with respect to given basis are
derived in an entry-wise closed form. Under interpolatory conditions, the solu-
tion to the regularized approximation problem is rewritten in forms of two kinds
of barycentric interpolation formulae, by introducing only a multiplicative cor-
rection factor into both classical barycentric formulae. An L2 error bound and a
uniform error bound are derived, providing similar information that Tikhonov
regularization is able to reduce the operator norm (Lebesgue constant) and the
error term related to the level of noise, both by multiplying a correction fac-
tor which is less than one. Numerical examples show the benefits of Tikhonov
regularization when data is noisy or data size is relatively small.

Keywords: Tikhonov regularization, hyperinterpolation, barycentric interpola-
tion, Gauss quadrature, polynomial approximation

1. Introduction

Polynomial approximation is used as the basic means of approximation in many fields of
numerical analysis, such as interpolation and approximation theory, numerical integration,
numerical solutions to differential and integral equations. In particular, the orthogonal poly-
nomial expansion occurs and plays an important role in these fields. It has been known that
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interpolation based on zeros of orthogonal polynomials prevails over that based on equispaced
points, and it is widely applied in numerical integration, spectral methods, and so on [33]. The
central issue in orthogonal polynomial computation is a fact that any nice enough function f(x)
can be expanded by a series of orthogonal polynomial [4, 31, 39]

f (x) =
∞∑
�=0

c�Φ�(x), c� =

∫ 1
−1 w(x) f (x)Φ�(x)dx∫ 1

−1 w(x)Φ2
� (x)dx

, � = 0, 1, . . . , (1.1)

where {Φ�(x)}∞�=0 is a family of orthogonal polynomials with respect to a nonnegative weight
function w(x) which satisfies

∫ 1
−1 w(x)dx < ∞, and Φ�(x) is of degree �. We only talk about

approximations on [−1, 1] in this paper, as any bounded interval can be scaled to [−1, 1]. One
natural approximation to f in the polynomial space PL of degree at most L is the polynomial
obtained by truncation to degree L:

ptrun
L (x) =

L∑
�=0

c�Φ�(x),

with coefficients {c�}L
�=0 are the same as those of f which are given in (1.1). Another is the

polynomial obtained by interpolation:

pinter
L (x) =

L∑
�=0

d�Φ�(x),

called interpolant, where {d�}L
�=0 is a set of coefficients which are determined such that

pinter
L (x) interpolates some given discrete points. Though {c�}L

�=0 can be approximated via some
quadrature rules on some discrete points, they are usually different from {d�}L

�=0 in general.
To establish a connection between coefficients in the truncated polynomial and the poly-

nomial interpolant, and to compute coefficients in concerned expansions efficiently on the
computer as well, we consider approximations with coefficients computed in a discrete way
and we use normalized orthogonal (orthonormal) polynomials {Φ̃�}L

�=0. That is, we are inter-
ested in approximation of a function (possibly noisy) f ∈ C([−1, 1]), where C([−1, 1]) is the
space of continuous functions on [−1, 1], by a polynomial

pL(x) =
L∑

�=0

β�Φ̃�(x) ∈ PL, x ∈ [−1, 1], (1.2)

where {β�}L
�=0 is a set of coefficients to be determined. Orthogonal polynomials are normalized

as Φ̃�(x) :=Φ�(x)/‖Φ�(x)‖L2, � = 0, . . . , L, where the L2 norm

‖ f ‖L2 :=
√
〈 f (x), f (x)〉L2

=

(∫ 1

−1
w(x)| f (x)|2dx

)1/2

(1.3)

is induced by the L2 inner product 〈 f (x), g(x)〉L2
:=

∫ 1
−1 w(x) f (x)g(x)dx which defines the

orthogonality in orthogonal polynomials [4, 31]. Normalization would not change the final
approximation polynomial pL, but it would greatly simplify the explicit expressions and the
computation of {β�}L

�=0, see section 2.
If the approximation is studied in a discrete way, then the determination of coefficients

{β�}L
�=0 shall depend on data { f(x j)} sampled on {x j}. In practice, however, the sampling

2



Inverse Problems 37 (2020) 015008 C An and H-N Wu

procedure is often contaminated by noise, and the classical least squares approximation is
sensitive to noisy data. Hence we may introduce regularization techniques to handle this case.
A widely used regularization technique is the Tikhonov regularization [14, 32], which adds an
�2

2 penalty. This technique shrinks all coefficients {β�}L
�=0 towards zero to provide stability and

reduce noise. Tikhonov regularization has been widely investigated in inverse and ill-posed
problems [13, 15, 36–38, 40], in which some least squares problems are also addressed [17,
18].

Suppose the size of sampling data is N + 1, thus our problem with consideration to discrete
format and Tikhonov regularization is stated as

min
β�∈R

⎧⎨
⎩

N∑
j=0

ω j

(
L∑

�=0

β�Φ̃�(x j) − f (x j)

)2

+ λ
L∑

�=0

|β�|2
⎫⎬
⎭ , λ > 0, (1.4)

where f is a given continuous function with values (possibly noisy) taken at a set
XN+1 = {x0, x1, . . . , xN} on [−1, 1]; {ω0,ω1, . . . ,ωN} is a set of some weights; and λ > 0
is the regularization parameter.

It is natural to choose a set of zeros of the corresponding orthonormal polynomial Φ̃N+1

to be the set XN+1, because when the basis for the approximation (1.2) is chosen as {Φ̃�}L
�=0,

this is a usually adopted choice. Apart from this point, the choice helps us to establish the
connection between the approximation polynomial (1.2) and interpolation, as many efficient
interpolation schemes are based on zeros of orthogonal polynomials, for example, Chebyshev
interpolation which are based on zeros of Chebyshev polynomials [33], and the fast and stable
barycentric interpolation [1, 34, 35]. It is well known that zeros of the orthogonal polynomial
ΦN+1 of degree N + 1 are just N + 1 Gauss quadrature points [5, 9].

If we require {ω j}N
j=0 to be N + 1 Gauss quadrature weights, and L and N to satisfy

2L � 2N + 1, then the first part in the objective function of (1.4) is the Gauss quadrature
approximation

N∑
j=0

ω j

(
L∑

�=0

β�Φ̃�(x j) − f (x j)

)2

≈
∫ 1

−1
w(x)

(
L∑

�=0

β�Φ̃�(x) − f (x)

)2

dx

=

∫ 1

−1
w(x)(pL(x) − f (x))2dx.

These requirements are kept in the whole paper. Note that the interval we consider is bounded,
hence the orthonormal basis is chosen as normalized Jacobi polynomials, which are defined
on [−1, 1], from the large family of orthogonal polynomials [4, 31].

If Gauss quadrature is adopted, we can construct entry-wise closed-form solutions to
problem (1.4) and show that this regularized approximation scheme is a generalization of
hyperinterpolation [30]. Under interpolatory conditions, we rewrite the approximation poly-
nomial (1.2) with constructed coefficients in forms of modified Lagrange interpolation and
barycentric interpolation [1], respectively, presenting Tikhonov regularized modified Lagrange
interpolation formula (3.9) and Tikhonov regularized barycentric interpolation formula (3.8).
Tikhonov regularization introduces only a simple factor 1/(1 + λ) into both formulae in their
classical versions. We also study the approximation quality of problem (1.4) in terms of the
L2 norm and the uniform norm, respectively, showing operator norms of this kind of approxi-
mation can be reduced by multiplying the same factor 1/(1 + λ), and an error term for noise
can also be reduced by the factor. Though Tikhonov regularization reduces the above terms, it

3
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would introduce an additional error term into the total error bound, which is dependent on the
best approximation polynomial p∗.

This paper is organized as follows. In the next section, we construct coefficients {β�}L
�=0

explicitly. In section 3, we present Tikhonov regularized barycentric interpolation formula and
Tikhonov regularized modified Lagrange interpolation formula, which are derived from the
explicit approximation polynomial (1.2) under interpolatory conditions. In section 4, we study
the quality of the approximation pL,N+1 ≈ f in terms of the L2 norm and the uniform norm. We
give several numerical examples in section 5 and conclude with some remarks in section 6.

2. Explicit coefficients in the Tikhonov regularized orthogonal polynomial
expansion

We construct coefficients {β�}L
�=0 in this section. The Tikhonov regularized approximation

problem (1.4) can be transformed into a matrix-form problem, which makes it easy for us to
construct our desired coefficients.

2.1. Preliminaries on Gauss quadrature weights

Gauss quadrature occurs in almost all textbooks of numerical analysis and of orthogonal
polynomials as well, and we refer to [4, 5, 9, 31].

Definition 2.1. Given a nonnegative weight functionw(x) which satisfies
∫ 1
−1 w(x)dx < ∞,

a quadrature formula

∫ 1

−1
w(x) f (x)dx ≈

N∑
j=0

ω j f (x j)

with N + 1 distinct quadrature points x0, x1, . . . , xN is called a Gauss quadrature formula if it
integrates all polynomials p ∈ P2N+1 exactly, i.e., if

N∑
j=0

ω jp(x j) =
∫ 1

−1
w(x)p(x)dx ∀p ∈ P2N+1. (2.1)

Points x0, x1, . . . , xN are called Gauss quadrature points.

It is well known that N + 1 Gauss quadrature points are zeros of the orthogonal polynomial
ΦN+1 of degree N + 1.

2.2. Construction of explicit coefficient

The function f sampled on XN+1 generates

f := f(XN+1) = [ f (x0), f (x1), . . . , f (xN)]T ∈ R
N+1,

and all Gauss quadrature weights ω0,ω1, . . . ,ωN corresponding to XN+1 form a vector

w :=w(XN+1) = [ω0,ω1, . . . ,ωN]T ∈ R
N+1.

Let A :=A(XN+1) ∈ R
(N+1)×(L+1) be a matrix of orthogonal polynomials evaluated at XN+1,

with entries

A j� = Φ̃�(x j), j = 0, 1, . . . , N, � = 0, 1, . . . , L.

4
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By subtracting the structure (1.2) of approximation polynomial into the Tikhonov regularized
approximation problem (1.4), the problem transforms into the following problem

min
β∈RL+1

‖W
1
2 (Aβ − f)‖2

2 + λ‖β‖2
2, λ > 0, (2.2)

where

W = diag(ω0,ω1, . . . ,ωN) ∈ R
(N+1)×(N+1).

Taking the first derivative of the objective function in problem (2.2) with respect to β leads
to the first order condition(

ATWA + λI
)
β = ATWf, λ > 0, (2.3)

where I ∈ R
(L+1)×(L+1) is an identity matrix. It is natural to solve a system of L + 1 linear

equations using methods of numerical linear algebra, especially when L is large. However,
the following lemma guarantees a diagonal structure of ATWA + λI, which is (1 + λ)I, thus
the solution to the first order condition (2.3) can be obtained in an entry-wise closed form.
When L becomes large, (2.3) can still be solved fast and stably, as it is actually a scalar-vector
multiplication.

Lemma 2.1. Let {Φ̃�}L
�=0 be a class of orthonormal polynomials with the weight function

w(x), and XN+1 = {x0, x1, . . . , xN} be the set of zeros of Φ̃N+1. Assume 2L � 2N + 1 and w
is a vector of weights satisfying the Gauss quadrature formula (2.1). Then

ATWA = I ∈ R
(L+1)×(L+1).

Proof. By the structure of ATWA and the exactness property (2.1) of Gauss quadrature
formula, we obtain

[
ATWA

]
��′ =

N∑
j=0

ω jΦ̃�(x j)Φ̃�′(x j) =
∫ 1

−1
w(x)Φ̃�(x)Φ̃�′(x)dx = δ��′ ,

where δ��′ is the Kronecker delta. The middle equality holds from Φ̃�(x)Φ̃�′(x) ∈ P2L ⊂ P2N+1,
and the last equality holds because of the orthonormality of {Φ̃�}L

�=0. �

Theorem 2.1. Under the condition of lemma 2.1, the optimal solution to the matrix-form
Tikhonov regularized approximation problem (2.2) can be expressed by

β� =
1

1 + λ

N∑
j=0

ω jΦ̃�(x j) f (x j), � = 0, 1, . . . , L, λ > 0. (2.4)

Consequently, the Tikhonov regularized approximation polynomial defined by approximation
problem (1.4) is

pL,N+1(x) =
1

1 + λ

L∑
�=0

⎛
⎝ N∑

j=0

ω jΦ̃�(x j) f (x j)

⎞
⎠ Φ̃�(x). (2.5)

Proof. This is immediately obtained from the first order condition (2.3) of the problem (2.2)
and lemma 2.1. �

5
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Remark 2.1. When λ = 0, coefficients reduce to

β� =

N∑
j=0

ω jΦ̃�(x j) f (x j), � = 0, 1, . . . , L,

which are coefficients of hyperinterpolation on the interval [−1, 1] [30]. Thus (2.5) could be
regarded as a generalization of hyperinterpolation over the interval [−1, 1].

In the limiting case N →∞, we have the following corollary.

Corollary 2.1. We have the Tikhonov regularized approximation polynomial pL,N+1 (2.5)
has the uniform limit pL,∞ as N →∞, that is,

lim
N→∞

‖pL,N+1 − pL,∞‖∞ = 0,

where

pL,∞(x) =
1

1 + λ

L∑
�=0

(∫ 1

−1
w(x)Φ̃�(x) f (x)dx

)
Φ̃�(x).

Proof. Let M :=max0���L{supx∈[−1,1]|Φ̃�(x)|}, then ‖pL,N+1 − pL,∞‖∞ is bounded above by

M
1 + λ

L∑
�=0

∣∣∣∣∣∣
N∑

j=0

ω jΦ̃�(x j) f (x j) −
∫ 1

−1
w(x)Φ̃�(x) f (x)dx

∣∣∣∣∣∣ ,

which converges to 0 as N →∞ due to the convergence of Gauss quadrature formula. �

3. Tikhonov regularized barycentric interpolation formula

Given the explicit Tikhonov regularized approximation polynomial (2.5), we study Tikhonov
regularized approximation when L = N (note that N + 1 interpolatory points lead to an inter-
polant of degree N). We focus on barycentric interpolation formula, a fast and stable interpo-
lation scheme, which has been made popular by Berrut and Trefethen [1] in recent years. This
study gives birth to Tikhonov regularized modified Lagrange interpolation and Tikhonov regu-
larized barycentric interpolation, which will be shown to share the same computational benefits
and stability properties with their classical versions, but also to have properties inherited from
Tikhonov regularization.

The barycentric interpolation is based on the Lagrange interpolation, where the interpolant
is written as

pN(x) =
N∑

j=0

f (x j)� j(x), � j(x) =
∏
k = j

x − xk

x j − xk
, j = 0, 1, . . . , N. (3.1)

An interesting rewriting of (3.1) is

pmdf
N (x) = �(x)

N∑
j=0

Ω j

x − x j
f (x j), (3.2)

6



Inverse Problems 37 (2020) 015008 C An and H-N Wu

where �(x) = (x − x0)(x − x1) · · · (x − xN), and

Ω j =
1∏

k = j(x j − xk)
, j = 0, 1, . . . , N (3.3)

are the so-called barycentric weights. Equation (3.2) has been called the ‘modified Lagrange
formula’ by Higham [8] and the ‘first form of the barycentric interpolation formula’ by
Rutishauser [27]. There is also a more elegant formula. The function values f(x j) ≡ 1 are
obviously interpolated by pmdf

N (x) = 1, hence (3.2) gives

�(x)
N∑

j=0

Ω j

x − x j
= 1. (3.4)

Using this equation and eliminating �(x) in (3.2) gives

pbary
N (x) =

∑N
j=0 Ω j f (x j)/(x − x j)∑N

j=0 Ω j/(x − x j)
, (3.5)

which is called the ‘second form of the barycentric interpolation formula’ by Rutishauser [27].
For details of the above derivation, we refer to the review paper by Berrut and Trefethen [1].

The evaluation of both formulae (3.2) and (3.5) is so simple. If the weights {Ω j} are known
or can be carried out with O(N) operations, both formulae produce the interpolant value eval-
uated at x with only O(N) operations. Indeed, computing the weights via (3.3) requires O(N2)
operations. However, For Chebyshev points of the first or second kind, the barycentric weights
are known analytically [1, 28, 29], and for other type of Jacobi points, such as Legendre points,
the barycentric weights are associated with the Gauss quadrature weights, and they can be car-
ried out with O(N) operations [34, 35] with the aid of the fast Glaser–Liu–Rokhlin algorithm
[6] for Gauss quadrature. The stability properties for both formulae were also investigated
by Higham [8]. Hence barycentric interpolation formulae are fast and stable interpolation
schemes.

We call formula (3.2) the ‘modified Lagrange interpolation formula’ and formula (3.5)
the ‘barycentric interpolation formula’ to distinguish them, in order to avoid the usage the
‘first’ and ‘second’. In the mathematical derivation, we first derive the Tikhonov regular-
ized barycentric interpolation formula, and then derive the Tikhonov regularized modified
Lagrange interpolation formula, not following the chronological order of the development of
both formulae.

The Tikhonov regularized approximation polynomial (2.5) when L = N can be written as

pN,N+1(x) =
N∑

�=0

∑N
j=0 ω jΦ̃�(x j) f (x j)

1 + λ
Φ̃�(x)

=

N∑
j=0

ω j f (x j)
N∑

�=0

Φ̃�(x j)Φ̃�(x)
1 + λ

. (3.6)

From the orthonormality of {Φ̃�(x)}N
�=0 we have

7
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N∑
j=0

ω j

N∑
�=0

Φ̃�(x j)Φ̃�(x) =
N∑

�=0

⎛
⎝ N∑

j=0

ω jΦ̃�(x j) · 1

⎞
⎠ Φ̃�(x)

=
N∑

�=0

δ0�‖Φ̃0(x)‖L2Φ̃�(x) = ‖Φ̃0(x)‖L2Φ̃0(x) = 1.

The last equality is due to Φ̃0(x) = Φ0(x)/‖Φ̃0(x)‖L2 and Φ0(x) = 1 for any Jacobi polynomial
of degree 0 [4, 31]. Then polynomial (3.6) can be rewritten as

pN,N+1(x) =

∑N
j=0

(
ω j
∑N

�=0 Φ̃�(x j)Φ̃�(x)
)

f (x j)

(1 + λ)
∑N

j=0 ω j
∑N

�=0 Φ̃�(x j)Φ̃�(x)
. (3.7)

By Christoffel–Darboux formula [4, section 1.3.3],

N∑
�=0

Φ̃�(x)Φ̃�(x j) =
‖ΦN+1(x)‖L2

‖ΦN(x)‖L2

Φ̃N+1(x)Φ̃N(x j) − Φ̃N+1(x j)Φ̃N(x)
x − x j

=
‖ΦN+1(x)‖L2

‖ΦN(x)‖L2

Φ̃N+1(x)Φ̃N(x j)
x − x j

,

with the fact that {x j}N
j=0 are zeros of ΦN+1(x). By substituting the above equation into (3.7)

and eliminating the common factor ‖ΦN+1(x)‖L2Φ̃N+1(x)/‖ΦN(x)‖L2 , which is not dependent
on the index j, from both the numerator and the denominator, (3.7) transforms to

pN,N+1(x) =

∑N
j=0 ω jΦ̃N(x j) f (x j)/(x − x j)

(1 + λ)
∑N

j=0 ω jΦ̃N(x j)/(x − x j)
.

As a matter of fact, Wang, Huybrechs and Vandewalle revealed a relation Ω j = ω jΦ̃N(x j)
between the barycentric weightΩ j and the Gauss quadrature weightω j at x j [34], which finally
leads to the following Tikhonov regularized barycentric interpolation formula.

Theorem 3.1. Tikhonov regularized barycentric interpolation formula. The polynomial
interpolant through data { f (x j)}N

j=0 at N + 1 points {x j}N
j=0 is given by

pTik−bary
N (x) =

∑N
j=0 Ω j f (x j)/(x − x j)

(1 + λ)
∑N

j=0 Ω j/(x − x j)
, (3.8)

where the weights {Ωj} are defined by (3.3).

Proof. Given in the discussion above. �
Multiplying the Tikhonov regularized barycentric interpolation formula (3.8) by

equation (3.4) gives the Tikhonov regularized modified Lagrange interpolation formula.

Theorem 3.2. Tikhonov regularized modified Lagrange interpolation formula. The polyno-
mial interpolant through data { f (x j)}N

j=0 at N + 1 points {x j}N
j=0 is given by

pTik−mdf
N (x) =

�(x)
1 + λ

N∑
j=0

Ω j

x − x j
f (x j), (3.9)

8
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where the weights {Ωj} are defined by (3.3).

Proof. Given in the described multiplication above the theorem. �
That’s it! The Tikhonov regularization only brings a multiplicative correction 1/(1 + λ) into

both modified Lagrange interpolation formula and barycentric interpolation formula, hence the
computational benefits and stability properties for the classical version of both formulae are
kept in the Tikhonov regularized version, the properties of Tikhonov regularization are also
conferred to both regularized formulae. If λ = 0, formulae (3.9) and (3.8) reduce to classical
modified Lagrange interpolation formula (3.2) and classical barycentric interpolation formula
(3.5), respectively.

4. Approximation quality

We then study the quality of the Tikhonov regularized approximation in terms of two kinds
of norms and in the presence of noise. We denote by f ε a noisy f , and regard both f and
f ε as continuous for the following analysis. Regarding the noisy version f ε as continuous
is convenient for theoretical analysis, and is always adopted by other scholars in the field of
approximation, see, for example, [25]. We adopt this trick, and investigate the approximation
properties in the sense of uniform error and L2 error, respectively, that is, the uniform norm
‖ f‖∞ = maxx∈[−1,1]| f(x)| and the L2 norm (1.3) are involved. The error of best approximation
of f by an element p of PL is also involved, which is defined by

EL( f ) := inf
p∈PL

‖ f − p‖∞, f ∈ C([−1, 1]).

By Weierstrass approximation theorem, EL( f) → 0 as L →∞. We denote by p∗ the best
approximation polynomial of degree L to f , i.e., EL( f) = ‖ f − p∗‖∞.

The approximation polynomial (2.5) can be deemed as an operator Uλ,L,N+1 : C([−1, 1])
→ L2([−1, 1]) acting on f, i.e.,

pL,N+1(x) :=Uλ,L,N+1 f (x) :=
L∑

�=0

β�Φ̃�(x).

We can define the L2 norm of the operator

‖Uλ,L,N+1‖L2 := sup
f =0

‖Uλ,L,N+1 f ‖L2

‖ f ‖∞
= sup

f =0

‖pL,N+1‖L2

‖ f ‖∞
,

and the uniform norm

‖Uλ,L,N+1‖∞ := sup
f =0

‖Uλ,L,N+1 f ‖∞
‖ f ‖∞

= sup
f =0

‖pL,N+1‖∞
‖ f ‖∞

. (4.1)

The uniform norm is none other than the Lebesgue constant (see, for example, [26]), which is
a tool for quantifying the divergence or convergence of polynomial approximation.

When λ = 0, the approximation polynomial reduces to the hyperinterpolation polynomial
[30] on [−1, 1]:

U0,L,N+1 f (x) =
L∑

�=0

⎛
⎝ N∑

j=0

ω jΦ̃�(x j) f (x j)

⎞
⎠ Φ̃�(x). (4.2)

9
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Apparently, given ‖U0,L,N+1‖L2 and ‖U0,L,N+1‖∞, Tikhonov regularization reduces both opera-
tor norms by introducing a correction factor 1/(1 + λ) as ‖Uλ,L,N+1 f ‖ = ‖U0,L,N+1 f ‖/(1 + λ).
However, the factor cannot be used for reducing approximation error, see the following anal-
ysis. When the level of noise is relatively small, it has been studied that one can directly
perform denoising tasks without regularization, see, for example, [7, 11]. What is interest-
ing for the following analysis is that Tikhonov regularization reduces operator norms but it
enlarges approximation errors, and it brings a trade-off on the errors when there exists noise.

4.1. L2 norm and L2 error

Recall that the weight function w(x) satisfies
∫ 1
−1 w(x)dx < ∞, we may just as well denote by

V the integral. With the aid of the exactness (2.1) of Gauss quadrature, we have V =
∑N

j=0 ω j.
As a special case on the interval [−1, 1], theorem 1 in [30] is stated as the following lemma.

Lemma 4.1. Let 2L � 2N + 1. Given f ∈ C([−1, 1]), and let U0,L,N+1 f ∈ PL be defined by
(4.2). Then

‖U0,L,N+1 f ‖L2 � V1/2‖ f ‖∞. (4.3)

With this lemma, we show Tikhonov regularization can reduce the L2 norm of operatorUλ,L,N+1

but it enlarges the approximation error ‖Uλ,L,N+1 f − f ‖L2 .

Proposition 4.1. Let 2L � 2N + 1. Given f ∈ C([−1, 1]), and let Uλ,L,N+1 f ∈ PL be
defined by (2.5). Then

‖Uλ,L,N+1 f ‖L2 � V1/2

1 + λ
‖ f ‖∞, (4.4)

and

‖Uλ,L,N+1 f − f ‖L2 �
(

1 +
1

1 + λ

)
EL( f ) +

λ

1 + λ
‖p∗‖L2 . (4.5)

Thus

lim
L→∞

‖Uλ,L,N+1 f − f ‖L2 �
λ

1 + λ
‖p∗‖L2 .

Proof. The stability result (4.4) follows from ‖Uλ,L,N+1 f ‖L2 = ‖U0,L,N+1 f ‖L2/(1 + λ)
and lemma 4.1. Note that for all g ∈ C([−1, 1]), from Cauchy–Schwarz inequality there

exists ‖g‖L2 =
√
〈g, g〉L2

� ‖g‖∞
√
〈1, 1〉L2

= V1/2‖g‖∞, and also note that for all p ∈ PL,

Uλ,L,N+1 p = p but from (2.5) we obtain

Uλ,L,N+1 p = (U0,L,N+1 p)/(1 + λ) = p/(1 + λ)

as U0,L,N+1 p = p (shown in [30, lemma 4]). Then for any polynomial p ∈ PL,

‖Uλ,L,N+1 f − f ‖L2 = ‖Uλ,L,N+1( f − p) − ( f − p) − (p− Uλ,L,N+1 p)‖L2

� ‖Uλ,L,N+1( f − p)‖L2 + ‖ f − p‖L2 + ‖p− Uλ,L,N+1 p‖L2

� V1/2

1 + λ
‖ f − p‖∞ + V1/2‖ f − p‖∞ +

λ

1 + λ
‖p‖L2 .

As the above inequality holds for any polynomials, letting p be p∗ leads to (4.5). �
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Proposition 4.1 indicates that when there is no noise, we should avoid introducing regular-
ization; however, when data are contaminated by noise, Tikhonov regularization can reduce a
new error term introduced by noise.

Theorem 4.1. Let 2L � 2N + 1. Given f ∈ C([−1, 1]) and its noisy version f ε ∈
C([−1, 1]), and let Uλ,L,N+1 f ∈ PL be defined by (2.5). Then

‖Uλ,L,N+1 f ε − f ‖L2 � V1/2

1 + λ
‖ f − f ε‖∞ +

(
1 +

1
1 + λ

)
EL( f ) +

λ

1 + λ
‖p∗‖L2 .

(4.6)

Proof. For any polynomial p ∈ PL,

‖Uλ,L,N+1 f ε − f ‖L2 = ‖Uλ,L,N+1( f ε − p) − ( f − p) − (p− Uλ,L,N+1 p)‖L2

� ‖Uλ,L,N+1( f ε − p)‖L2 + ‖ f − p‖L2 + ‖p− Uλ,L,N+1 p‖L2

� V1/2

1 + λ
‖ f ε − p‖∞ + V1/2‖ f − p‖∞ +

λ

1 + λ
‖p‖L2 .

Estimating ‖ f ε − p‖∞ by ‖ f ε − p‖∞ � ‖ f ε − f‖∞ + ‖ f − p‖∞ and letting p be p∗ lead to
(4.6). �

Remark 4.1. When there exists noise and λ = 0, there holds

‖U0,L,N+1 f ε − f ‖L2 � V1/2‖ f − f ε‖∞ + 2EL( f ),

which enlarges the part V1/2‖ f − f ε‖∞/(1 + λ) +
(
1 + 1/(1 + λ)

)
EL( f ) in (4.6) but van-

ishes the part λ‖p∗‖L2/(1 + λ). Hence there should be a trade-off strategy for λ in practice.

4.2. Uniform norm (Lebesgue constant) and uniform error

The uniform case provides the similar information on the Tikhonov regularization as the L2

case. Let

ΛL := sup
f =0

‖U0,L,N+1 f ‖∞
‖ f ‖∞

(4.7)

be the Lebesgue constant for hyperinterpolation U0,L,N+1 of degree L. It is obvious that
Tikhonov regularization can reduce the Lebesgue constant (4.7).

Proposition 4.2. Let ΛL be the Lebesgue constant for hyperinterpolation U0,L,N+1 of
C([−1, 1]) onto PL, and let Λλ,L be the Lebesgue constant for Tikhonov regularized approxi-
mation Uλ,L,N+1 of C([−1, 1]) onto PL. Then

Λλ,L := ‖Uλ,L,N+1‖∞ =
1

1 + λ
ΛL.

Proof. For any f ∈ C([−1, 1]), there holds U0,L,N+1 f = Uλ,L,N+1 f /(1 + λ), then

Λλ,L = sup
f =0

‖Uλ,L,N+1 f ‖∞
‖ f ‖∞

=
1

1 + λ
sup
f =0

‖U0,L,N+1 f ‖∞
‖ f ‖∞

=
1

1 + λ
ΛL.

Hence we prove this proposition. �
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Remark 4.2. As hyperinterpolation reduces to interpolation when L = N [30], Tikhonov
regularization can also reduce Lebesgue constants of classical interpolation.

Though Lebesgue constants are reduced by introducing regularization, approximation errors
may be enlarged.

Proposition 4.3. Let 2L � 2N + 1. Given f ∈ C([−1, 1]), and let Uλ,L,N+1 f ∈ PL be
defined by (2.5). Then

‖Uλ,L,N+1 f − f ‖∞ � (1 + Λλ,L)EL( f ) +
λ

1 + λ
‖p∗‖∞.

Proof. By the definition (4.1) of Lebesgue constant of Tikhonov regularized approximation,
‖Uλ,L,N+1( f − p∗)‖∞ is not greater than Λλ,L‖ f − p∗‖∞, thus

‖Uλ,L,N+1 f − p∗‖∞ � Λλ,L‖ f − p∗‖∞ + ‖p∗ − Uλ,L,N+1 p∗‖∞

= Λλ,L‖ f − p∗‖∞ +
λ

1 + λ
‖p∗‖∞ (4.8)

as Uλ,L,N+1( f − p∗) = (Uλ,L,N+1 f − p∗) + (p∗ − Uλ,L,N+1 p∗). Then the decomposition
Uλ,L,N+1 f − f = (Uλ,L,N+1 f − p∗) − ( f − p∗) completes the proof. �

Remark 4.3. Comparing with the classical near-best approximation property
‖U0,L,N+1 f − f ‖∞ � (1 + ΛL)EL( f ), Tikhonov regularization reduces the part (1 + ΛL)EL( f)
but introduces a new part λ‖p∗‖∞/(1 + λ).

Theorem 4.2. Let 2L � 2N + 1. Given f ∈ C([−1, 1]) and its noisy version
f ε ∈ C([−1, 1]), and let Uλ,L,N+1 f ∈ PL be defined by (2.5). Then

‖Uλ,L,N+1 f ε − f ‖∞ � Λλ,L‖ f ε − f ‖∞ + (1 + Λλ,L)EL( f ) +
λ

1 + λ
‖p∗‖∞.

Proof. Since Uλ,L,N+1 f ε − f = (Uλ,L,N+1 f ε − p∗) − ( f − p∗), replacing f by fε in (4.8)
leads to

‖Uλ,L,N+1 f ε − f ‖∞ = Λλ,L‖ f ε − p∗‖∞ +
λ

1 + λ
‖p∗‖∞ + ‖ f − p∗‖∞.

The decomposition ‖ f ε − p∗‖∞ � ‖ f ε − f‖∞ + ‖ f − p∗‖∞ completes the proof of the
theorem. �

Remark 4.4. When there exists noise and λ = 0, there holds

‖U0,L,N+1 f ε − f ‖∞ � ΛL‖ f ε − f ‖∞ + (1 + ΛL)EL( f ).

Recall that Λλ,L < ΛL if λ > 0. The theorem asserts that Tikhonov regularization can reduce
the error introduced by noise, and indicates again that there should be a trade-off strategy for
λ in practice.

12
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Figure 1. Computational results on approximation scheme (2.5) with fixed N = 500 and
increasing L from 10 to N, in the presence of 5 dB Gauss white noise.

Figure 2. Computational results on approximation scheme (2.5) with fixed L = 500 and
increasing N from 500 to 2000, in the presence of 5 dB Gauss white noise.

5. Numerical experiments

In this section, we report numerical results to illustrate the theoretical results derived above
and test the efficiency of the Tikhonov regularized approximation in Gauss quadrature points.
Three testing functions are involved in the following experiments, which are a function given
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Figure 3. Computational results of classical barycentric formula (3.5) and Tikhonov
regularized barycentric formula (3.8) in approximating f3(x), with the number N of
interpolatory points increasing from 20 to 1000.

in [1]

f1(x) = |x|+ x
2
− x2,

an Airy function

f2(x) = Airy(40x),

and a rather wiggly function given in [33]

f3(x) = tanh(20 sin(12x)) + 0.02e3x sin(300x).

Commands for computing Gauss quadrature points and weights, and barycentric weights are
included in Chebfun 5.7.0 [2]. All numerical results are carried out by using MATLAB
R2020a on a laptop (16 GB RAM, Intel R©CoreTM i7-9750H Processor) with macOS Catalina.

We adopt the uniform error and the L2 error to test the efficiency of approximation, which
are estimated as follows. The uniform error of the approximation is estimated by

‖ f (x) − pL,N+1(x)‖∞ := max
x∈[−1,1]

| f (x) − pL,N+1(x)|

� max
x∈X

| f (x) − pL,N+1(x)|,

14
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Figure 4. Left column: true data (solid) and noisy data (dash). Middle column: inter-
polants obtained by classical barycentric formula (dash) and Tikhonov regularized
barycentric formula (solid) in 61 points. Right column: errors |pbary

N (x) − f1(x)| (dash)
and |pTik−bary

N (x) − f1(x)| (solid).

where X is a large but finite set of well distributed points over the interval [−1, 1]. The L2 error
of the approximation is estimated by a proper Gauss quadrature rule:

‖ f (x) − pL,N+1(x)‖L2 =

(∫ 1

−1
w(x)( f (x) − pL,N+1(x))2dx

)1/2

�

⎛
⎝ N∑

j=0

ω j( f (x j) − pL,N+1(x j))2

⎞
⎠

1/2

.

We first test the efficiency of approximation scheme (2.5) of f1(x) and f2(x) by nor-
malized Chebyshev polynomials of the first kind with data sampled on Gauss–Chebyshev
points of the first kind in the presence of noise. The level of noise is measured by signal-
to-noise ratio (SNR), which is defined as the ratio of signal power to the noise power, and is
often expressed in decibels (dB). A lower scale of SNR suggests more noisy data. We take
λ = 10−2, 10−1.9, . . . , 10−0.1, 1 to choose the best regularization parameter. Here we choose
λ = 10−0.7 for all the following experiments. For more advanced and adaptive methods to
choose the parameter λ, we refer to [10, 16, 25]. Fix N = 500, let L be increasing from 10
to N, and add 5 dB Gauss white noise onto sampled data. Uniform errors and L2 errors for
approximations of both f1(x) and f2(x) are shown in figure 1, illustrating that the Tikhonov
regularization can reduce noise, especially when L becomes large. The enlarging gap between
L2 errors is due to a fact that increasing L requires more data but the data size is fixed (fixed N),
hence the gap also suggests that Tikhonov regularization can handle this data shortage issue.

On the other hand, if we fix L = 500 and let N be increasing from 500 to 2000, that is, data
size is increasing, then figure 2 describes decreasing uniform errors and L2 errors with respect
to N. The starting value of N is 500 since Gauss quadrature would lose its exactness if N � L.
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Figure 5. Left column: true data (solid) and noisy data (dash). Middle column:
interpolants obtained by classical barycentric formula (dash) and Tikhonov regular-
ized barycentric formula (solid) in 61 points. Right column: errors |pbary

N (x) − ( f1(x)
+ sin(10x))| (dash) and |pTik−bary

N (x) − ( f1(x) + sin(10x))| (solid).

Computational results plotted in figure 2 also assert that the Tikhonov regularization can reduce
noise, especially when N is small. In this case, the gap becomes narrow as N increasing, which
is due to the same fact that more data lead to better performance. This narrowing gap also
indicates that Tikhonov regularization can handle this data shortage issue.

We then test the efficiency of Tikhonov regularized barycentric interpolation formula (3.8)
in approximating f3(x), with data sampled on Gauss–Chebyshev points of the first kind. The
experiment is conducted via the barycentric interpolation scheme (3.8) rather than the approxi-
mation scheme (2.5) under interpolatory conditions. Computational results in figure 3 show that
Tikhonov regularized barycentric interpolation works better than classical barycentric interpo-
lation in the presence of noise. However, in the noise-free case, both kinds of errors for classical
barycentric interpolation decline to 0 as L increasing but those for Tikhonov regularized case do
not. This misconvergence result of Tikhonov regularized barycentric interpolation, in another
perspective, is a good agreement with the theoretical result that regularization would introduce
an additional error λ‖p∗‖L2/(1 + λ) into the L2 error bound (4.5), and this error is around 0.3
in this experiment.

At last, we take a certain N, say N = 60, and test on function f1(x). Figure 4 reports the
results, and ‘true data’ in all subfigures denotes values of f1(x) at 61 Gauss–Chebyshev points
of the first kind. When data is sampled via f1(x), that is, there is no noise in sampling, as
shown in the above experiment, regularization is not needed. For numerical results on classical
barycentric interpolation with true data, we refer to [1, 34]. When data is sampled via a multi-
ple of f1(x), which is 1.2 f1(x) here, true data and Tikhonov regularized interpolant appear to
be in a good agreement, which is due to 1.2/(1 + λ) = 1.0004 ≈ 1 with λ = 10−0.7. We then
test on different levels of additive random noise. Data are sampled via (1 + 0.3r) ∗ f1(x j) and
(1 + 0.4r) ∗ f1(x j), respectively, where j = 0, 1, . . . , N, and r is a random number in (0, 1)
which is generated by MATLAB command rand(1). Tikhonov regularized barycentric
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formula performs better than the classical formula when the level of noise becomes large,
especially near both endpoints.

If we add an oscillating term sin(10x) onto f1(x), plots in figure 5 show the similar results
with those in figure 4. In this figure, Tikhonov regularized barycentric formula also performs
better than the classical formula in concerned levels of noise, especially near extreme points
of f1(x) + sin(10x).

6. Concluding remarks

What we have seen from the above is that Tikhonov regularization can reduce noise in sam-
pling data with an approximation scheme, in terms of reducing Lebesgue constants and the
error term relating to noise. But it also introduces an additional error term, hence a trade-
off strategy should be customized in practice. These findings also suit for the newly pre-
sented Tikhonov regularized barycentric formulae. While solving this approximation problem,
it is shown that proper choice of orthonormal polynomials and Gauss quadrature points
leads to entry-wise closed-form solutions to the problem, which simplifies the analysis on
the approximation scheme. Gauss quadrature rules can be relaxed by using the concept of
Marcinkiewicz–Zygmund quadrature measure (see, for example, [3, 19, 20, 22]), thus results
in this paper can be generalized based on Marcinkiewicz–Zygmund quadrature. The reason
why Gauss quadrature rules are adopted in this paper is two-fold: on the one hand, using Gauss
quadrature is enough to provide a window into the behavior of approximation error in the usage
of Tikhonov regularization and in the presence of noise; on the other hand, the development of
barycentric interpolation formulae is based on Gauss quadrature points [1].

Although we only consider the simplest Tikhonov regularization term, it also provides some
useful information that regularization may improve performance of polynomial approxima-
tion. In inverse problems, statistics, and machine learning, different kinds of regularization
terms are developed. We may consider other regularization techniques and derive other reg-
ularized barycentric interpolation formulae in the future. With the fast and stable property of
barycentric formulae, regularized barycentric formulae provide a flexible choice for polyno-
mial interpolation in noisy case, which only introduces a multiplicative factor 1/(1 + λ) or
maybe other corrective factors derived in the future. Last but far from the least, the choices of
the polynomial degree L and regularization parameterλ deserve future studies. The polynomial
degree has already been considered as a regularization parameter to deal with ill-conditioned
issues [12, 21, 23, 24], and we expect an appropriate choice of L to make better performance in
the context of Tikhonov regularized polynomial approximation. Regularization parameter λ,
which is chosen in a manual way in numerical experiments, also needs to be addressed more
adaptively, see, for example, [10, 16, 25].
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