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Abstract
The total variation (TV) regularization has phenomenally boosted various
variational models for image processing tasks. We propose to combine the
backward diffusion process in the earlier literature on image enhancement
with the TV regularization, and show that the resulting enhanced TV minim-
ization model is particularly effective for reducing the loss of contrast. The
main purpose of this paper is to establish stable reconstruction guarantees
for the enhanced TV model from noisy subsampled measurements with two
sampling strategies, non-adaptive sampling for general linear measurements
and variable-density sampling for Fourier measurements. In particular, under
some weaker restricted isometry property conditions, the enhanced TV min-
imization model is shown to have tighter reconstruction error bounds than
various TV-based models for the scenario where the level of noise is significant
and the amount of measurements is limited. The advantages of the enhanced
TV model are also numerically validated by preliminary experiments on the
reconstruction of some synthetic, natural, and medical images.
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1. Introduction

Since the work of Rudin et al [55], various variational models based on the total variation (TV)
have been intensively studied for image processing problems; see, e.g. [15, 17] for reviews.
Given linear measurements y ∈ Cm observed via

y=MX̄+ e (1.1)

from an unknown image X̄ ∈ CN×N, where M : CN×N → Cm is a linear operator defined
component-wisely by

[M(X̄)]j := 〈Mj, X̄〉= tr(MjX̄
∗),

for suitable matrices Mj with m considerably smaller than N2, and e ∈ Cm is a noise term
bounded by ‖e‖2 ⩽ τ with level τ ⩾ 0, reconstruction of the unknown X̄ can be modeled as
the following TV minimization problem:

min
X∈CN×N

‖X‖TV s.t. ‖MX− y‖2 ⩽ τ, (1.2)

where ‖ · ‖TV is the TV semi-norm. Note that the TV semi-norm can be mainly categorized
as the isotropic [13] and anisotropic [14] cases for discrete images. In this paper, we discuss
how to enhance the canonical constrained TVmodel (1.2) by the recently proposed springback
regularization in [4] for image reconstruction and establish stable reconstruction guarantees.

As profoundly analyzed in [47], the constrained TVmodel (1.2) has the advantage of recon-
structing high-quality images from a relatively small number of measurements. Theoretical
analysis in [47] is mainly based on the seminal compressed sensing (CS) works [10, 23].
Note that the classic CS theory assumes the sparsity of the (vector) signal of interest or its
coefficients under certain transformations. Correspondingly the signal reconstruction can be
modeled as some ℓ1-norm minimization problems. The CS theory can be extended to image
reconstruction because natural images usually have (approximately) sparse gradients. Indeed,
mathematically the TV semi-norm of a discrete image X ∈ CN×N is just the sum of the mag-
nitudes of all entries |[∇X]j,k| in its gradient ∇X ∈ CN×N×2. That is,

‖X‖TV := ‖∇X‖1 =
∑
j,k

|[∇X]j,k|, (1.3)

where the definitions of ∇X and |[∇X]j,k| are given as follows. For any image X ∈ CN×N rep-
resented by an N×N block of pixel intensities with all intensities Xj,k in [0,1], the discrete
directional derivatives of X ∈ CN×N are defined in a pixel-wise manner as

Xx : CN×N → C(N−1)×N, (Xx)j,k := Xj+1,k−Xj,k,

Xy : CN×N → CN×(N−1), (Xy)j,k := Xj,k+1 −Xj,k.

The discrete gradient transform ∇ : CN×N → CN×N×2 is defined in a matrix form as

[∇X]j,k :=


((Xx)j,k,(Xy)j,k) , 1⩽ j⩽ N− 1, 1⩽ k⩽ N− 1,

(0,(Xy)j,k) , j= N, 1⩽ k⩽ N− 1,

((Xx)j,k,0) , 1⩽ j⩽ N− 1, k= N,

(0,0) , j= k= N.

If the magnitude |[∇X]j,k| is defined as |(Xx)j,k|+ |(Xy)j,k|, then it leads to the anisotropic TV
semi-norm ‖ · ‖TVa as defined in [14, 24], that is, the sum of the magnitudes of its discrete
gradient
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‖X‖TVa :=
∑

j,k
|(Xx)j,k|+ |(Xy)j,k|. (1.4)

If |[∇X]j,k| is defined as
√
(Xx)2j,k+(Xy)2j,k, then it leads to the isotropic TV semi-norm ‖ · ‖TVi

as defined in [13]:

‖X‖TVi :=
∑

j,k

√
(Xx)2j,k+(Xy)2j,k.

If we regard ∇X as an N2 × 2 matrix, then ‖X‖TVa and ‖X‖TVi are the ℓ1,1 and ℓ2,1 norms of
∇X, respectively. Since both TV semi-norms are equivalent subject to a factor of

√
2 in the

sense that

‖X‖TVi ⩽ ‖X‖TVa ⩽
√
2‖X‖TVi , (1.5)

similarly to [47], we only consider the anisotropic case for succinctness and the following
discussion can be extended to the isotropic case analogously. Moreover, note that ‖∇X‖2 =
(
∑

j,k(Xx)
2
j,k+(Xy)2j,k)

1/2 in the second component of the enhanced TV regularization (1.6) is
the ℓ2,2 norm of ∇X.

Models using the ℓ1-norm are fundamental to various CS problems, while solutions to such
models may be over-penalized because the ℓ1 regularization tends to underestimate the high-
amplitude components of the solution, as analyzed in [25]. Accordingly, many non-convex
alternatives have been proposed in the literature to overcome this pitfall and thus promote
sparsity more firmly; see, e.g. the ℓp (0< p< 1) regularization [21, 27], the ℓ1−2 regularization
[6, 29, 38, 42, 67–69], and the transformed ℓ1 regularization [72, 73]. The non-convexity fea-
ture in image processing has also been emphasized in various papers; see, e.g. [48]. Recently,
we proposed the springback regularization in [4], and it can be generalized as the following
for discrete images:

Rα(X) := ‖∇X‖1 −
α

2
‖∇X‖22, (1.6)

where α> 0 is a meticulously-chosen parameter to ensure the positiveness or the well-
definedness of (1.6), ‖∇X‖1 is the TV term (1.3) and we focus on the anisotropic defini-
tion (1.4) in this paper, and ‖∇X‖22 is the sum of the squared magnitudes of ∇X. Note that the
springback regularization (1.6) is of difference-of-convex. To some extent, it keeps both the
nice recoverability of various non-convex surrogates of the TV regularization and the comput-
ability of the original TV regularization. To be consistent with the TV literature, we call (1.6)
an enhanced TV regularization in this paper.

Non-convex penalties proposed in the CS literature are mainly rooted in the field of stat-
istics, and they are usually applied in straightforward ways in the image processing literat-
ure. Interestingly, as elaborated in section 1.1, the enhanced TV regularization (1.6) has some
intrinsic interpretations from the perspective of image processing. We are thus encouraged to
consider the enhanced TV model

min
X∈CN×N

Rα(X) s.t. ‖MX− y‖2 ⩽ τ (1.7)

for image reconstruction, and we aim at establishing some stable reconstruction guarantees
theoretically. It is worth noting that, despite the theoretical reconstruction guarantees estab-
lished in [4] for sparse signals or signals that are sparse after an orthonormal transform, the
guarantees established in [4] are not applicable to the enhanced TV model (1.7). The reason is
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that the gradient transform ∇ : X→∇X fails to be orthonormal, as mentioned in [47]. Also,
we notice that the idea of enhancing the TV regularization (the isotropic version) with a sub-
traction of a squared norm of the image gradient was skated over in [45], and it was empirically
tested for some image denoising problems despite the lack of rigorous study for reconstruction
guarantees from a few measurements.

1.1. An image processing view of the enhanced TV regularization

Solutions to TV-based models may lose contrast across edges. That is, the contrast of the
regions on both sides of an edge may be reduced, and thus blur may occur near the edge.
We refer the reader to [5, 58] for discussions on the loss of contrast caused by various image
processing models using TV regularization.

Partial differential equations (PDEs) and variational approaches have been intensively
investigated to enhance the contrast. On the PDE side, some well-known approaches were
proposed to tackle the loss of contrast for image enhancement. For example, the shock filter
was proposed in [49] to deal with blur-like image degradations, creating strong discontinuities
at image edges and flattening the image within homogeneous regions. Afterwards, the shock
filter has been generalized in many ways; see, e.g. [3, 65]. Another important example is the
forward-and-backward (FAB) diffusion scheme proposed in [30] to simultaneously remove the
noise and enhance the contrast. Since then, a number of influential works regarding the FAB
diffusion have been conducted; see, e.g. [62, 64, 66]. Despite that different PDE schemes were
designed, a common feature of these works is that the backward diffusion process is adopted to
enhance the contrast of the edges in a concerning image. Since backward diffusion is a classic
example of an ill-posed problem [61], most of these PDE schemes sound numerically chal-
lenging; we refer the reader to [18, 19, 63] on discretizing and solving these PDEs efficiently.
On the variational side, there are attempts to add negative terms into the variational model to
maximize the contrast, see, e.g. [28, 50], though their connections with the TV regularization
are not considered.

We remark that the enhanced TV model (1.7) has a connection to the backward diffu-
sion approach from the PDE perspective. A detailed explanation in the context of the Euler–
Lagrange (E–L) equation in a continuum setting is included in appendix A. Briefly speaking,
the term −α

2 ‖∇X‖
2
2 generates an additional backward diffusion term −α∆X into the E–L

equation corresponding to the classic TV regularization. In figure 1, we empirically illustrate
that the enhanced TV regularization (1.6) is very effective for some fundamental denoising
and deblurring problems. Figure 1 clearly shows that the enhanced TV regularization (1.6)
outperforms the original TV regularization in removing noise, reducing loss of contrast, and
maintaining smoothness inside homogeneous regions. These compelling performances clearly
motivate us to consider theoretical reconstruction guarantees for the enhanced TVmodel (1.7).
Implementation details for reproducing figure 1 are enclosed in appendix B.

In figure 1, we also note that the enhanced TV regularization (1.6) may not ideally overcome
another drawback of TV: the staircase effect. That is, solutions to TV-based models may have
stair-like edges. Many efforts are trying to avoid this effect, including the replacement of the
TV regularization with an exponentiation term of it [7], the usage of the infimal convolution
of functionals with first- and second-order derivatives as regularizer [16], the addition of some
higher-order terms into the E–L equation corresponding to the variational TV model [20],
the total generalized variation [8], the usage of some modified infimal convolutions [56, 57]
regarding [16], and many others.
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Figure 1. Illustration of the TV and enhanced TV regularization for image denoising.
Top row: SSIM values of each image; Bottom row: intensity profiles of each image along
the horizontal straight line splitting the image equally.

1.2. A CS view of the enhanced TV regularization

In addition to the PDE and variational perspectives, another interpretation of the enhanced
TV regularization (1.6) can be given from the perspective of CS. As previously discussed,
an image X is mostly sparse after the gradient transform ∇ : X→∇X. Mathematically, CS
amounts tominimizing the ℓ0 norm of the image gradient, i.e. ‖∇X‖0, which counts the number
of non-zero entries of ∇X. To bypass the NP-hard nature of the ℓ0 norm, we typically seek its
alternatives which lead to more tractable models. In the context of image reconstruction, we
have the TV regularization [14, 24, 55]

‖X‖TV =
∑
j,k

|[∇X]j,k| ,

which corresponds to the ℓ1 penalty in CS. We also have the transformed TV
regularization [33]

‖X‖TTV =
∑
j,k

(β+ 1) |[∇X]j,k|
β+ |[∇X]j,k|

with β > 0, which corresponds to the transformed ℓ1 regularization [73] in CS. Moreover, we
have the weighted difference of anisotropic and isotropic TV regularization [39]

‖X‖TVa −α‖X‖TVi =
∑
j,k

(
|(Xx)j,k|+ |(Xy)j,k| −α

√
(Xx)2j,k+(Xy)2j,k

)
and the minimax concave penalty (MCP) [70, 71]

‖X‖MCP−TV =
∑
j,k

ϕµ(|[∇X]j,k|),
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Figure 2. Level curves of different regularization terms with anisotropic definitions:
|[∇X]j,k|= |(Xx)j,k|+ |(Xy)j,k|.

where µ> 0 and

ϕµ(x) =

{
|x| − x2/(2µ), |x|⩽ µ,

µ/2, |x|⩾ µ.

Our enhanced TV regularization (1.6) can also be written as

Rα(X) =
∑
j,k

[
|[∇X]j,k| −

α

2

(
(Xx)

2
j,k+(Xy)

2
j,k

)]
.

In image reconstruction, it is desirable for regularization terms to generate reasonably close
approximations of ‖∇X‖0. Since all the regularization terms mentioned above are separable,
we can compare their behavior in terms of each component. We adopt the anisotropic defini-
tion |[∇X]j,k|= |(Xx)j,k|+ |(Xy)j,k|, except for the TVa−αTVi regularization.We set β, µ, and
α to 1 for all regularization terms. We plot the level curves of each component with respect
to |(Xx)j,k| and |(Xy)j,k| in figure 2. Note that the axes of color bars are intended not to be uni-
fied for better visualization. The level lines of the ℓ0 norm are 0 at the origin, 1 at the axes,
and 2 elsewhere. Apart from the convex anisotropic TV regularization, all other regularization
terms are non-convex and promote the approximation behavior to the ℓ0 norm. We observe
from figure 2 that all regularization terms preserve 0 at the origin, indicating that they behave
similarly within homogeneous regions of images. Additionally, our enhanced TV regulariza-
tion is closer to the ℓ0 norm than the other terms at both axes. This suggests that the enhanced
TV regularization performs analogously to the ℓ0 norm around horizontal and vertical edges.
In comparison, the TVa−TVi regularization yields 0 at both axes. Moreover, we note that the
transformed TV regularization behaves like plain shrinkage from the anisotropic TV. Further-
more, the truncated definition of the MCP-TV regularization provides it with a closer approx-
imation to the ℓ0 normwithin the non-axis area than other regularization terms, suggesting that
this regularization may preserve the behavior of the ℓ0 norm along oblique edges. However,
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Figure 3. Level curves of different regularization terms with isotropic definitions:

|[∇X]j,k|=
√

(Xx)2j,k+(Xy)2j,k.

the truncated definition of the MCP-TV may confound oblique edges with horizontal/vertical
edges because it has the same values from the end of both axes and non-axis areas. Mean-
while, the enhanced TV regularization performs better than the MCP-TV along the horizontal
or vertical edge because the enhanced TV regularization preserves the behavior of the ℓ0 norm
at the end of box axes better than the MCP-TV. These observations suggest that the enhanced
TV regularization may be a good proxy of the ℓ0 norm in the context of image reconstruction.
To compare scalar regularization terms and shrinkage operators for corresponding proximal
mappings, we refer the reader to our previous work [4].

Since the anisotropic version of the TV regularization is the ℓ1 norm of the image gradient
∇X when it is viewed as a vector, it may be more suitable for image reconstruction than the
isotropic version of the TV regularization. In figure 3, the level curves show that the isotropic
TV regularization may be less capable for approximating the ℓ0 norm than the anisotropic one.
Similar results will also be presented in section 5. Hence, we focus on the anisotropic version
of the TV regularization in the paper.

1.3. Contributions

In the CS context, it is possible to exactly recover a signal if the signal is sparse and its meas-
urements are noise-free; otherwise, we can only establish stable recovery guarantees. The term
stable in this paper is mainly concerned with both inexact sparsity andmeasurement noise. Our
analysis is conducted under the restricted isometry property (RIP) framework studied in [11].
We say that a linear operator A : Cn1×n2 → Cm has the RIP of order s and level δ ∈ (0,1) if

(1− δ)‖X‖22 ⩽ ‖AX‖22 ⩽ (1+ δ)‖X‖22 ∀s−sparse X ∈ Cn1×n2 , (1.8)

and the smallest δ for (1.8) is said to be the restricted isometry constant (RIC) associated
with A.

We first investigate non-adaptive subsampled linear RIP measurements of an image X̄ ∈
CN×N with noise level τ > 0. By ‘non-adaptive,’ we mean that the sampling strategy is not
designed with specific structures or under certain distributions. In theorem 3.1, we show that
the enhanced TV model (1.7) can stably reconstruct an image X̄ ∈ CN×N from some non-
adaptive subsampled linear RIP measurements which are contaminated by noise, with the RIP
order O(s), the RIP level δ < 0.6, and the noise level τ > 0. Moreover, the required RIP level
δ < 1/3 derived in [47] for the TV model (1.2) is weakened to δ < 0.6 for the enhanced TV
model (1.7) under the additional condition (3.8) for the parameter α. We also show in the-
orem 3.2 that the reconstruction error bound in theorem 3.1 can be further improved if more
measurements are allowed.
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The above reconstruction guarantees for non-adaptive measurements require the sub-
sampled measurements and the Haar wavelet basis to be sufficiently incoherent. This require-
ment is satisfied by many kinds of measurements except for the Fourier frequency measure-
ments, because low-order wavelets and Fourier measurements are highly correlated, as ana-
lyzed in [36]. Fourier measurements play essential roles in many imaging tasks. For example,
as discussed in [26, 36], the measurement process of various image processing procedures
such as radar, sonar, and computer tomography can be modeled (with appropriate approxima-
tion and discretization) by taking samples from weighted discrete Fourier transforms. It is also
known (see, e.g. [41]) that measurements taken for magnetic resonance imaging (MRI) can be
well modeled as Fourier coefficients of the desired image.

On the other hand, many empirical pieces of evidence, including the first works [40, 41]
for CS MRI, have shown that better reconstruction quality is possible by subsampling Fourier
frequency measurements with a preference for low frequencies over high frequencies. Thus,
we follow the density-variable sampling strategy proposed in [36] and choose Fourier meas-
urements randomly according to an inverse square law density. We show that from at least
m≳ s log3(s) log5(N) such subsampled Fourier measurements with s≳ log(N), the enhanced
TVmodel (1.7) reconstructs an unknown image X̄ stably with high probabilities. We also show
that the least amount of Fourier measurements required by the enhanced TVmodel (1.7) is only
(0.6/(1/3))−2 ≈ 30.86% of that by the TV model (1.2) as established in [36].

1.4. Related works

We briefly review some TV-related works on image reconstruction. The reconstruction of a
one-dimensional image inCN with an exactly s-sparse gradient from noise-free, uniformly sub-
sampled Fourier measurements was considered in [10], without stability analysis concerning
the inexact sparsity or noise. It was shown that this one-dimensional image could be recovered
exactly by solving the corresponding TV model with high probabilities, provided that the
number of measurements m satisfies m≳ s log(N). The reconstruction of a one-dimensional
image using noisy measurements was then considered in [9]. The stability of the reconstruc-
tion of approximately sparse images from noisy measurements was first shown in [47] for two-
dimensional images and soon extended to higher-dimensional cases in [46]. More specifically,
it was asserted in [47] that, from some non-adaptive subsampled linear RIP measurements of
an image X̄ ∈ CN×N with the RIP orderO(s), the RIP level δ < 1/3, and the noise level τ > 0,
the solution Xopt to the TV model (1.2) satisfies

‖X̄−Xopt‖2 ≲ log

(
N2

s

)(
‖∇X̄− (∇X̄)s‖1√

s
+ τ

)
, (1.9)

where (∇X̄)s is the best s-sparse approximation to the discrete gradient ∇X. Moreover, with
more measurements, it was shown in [47] that the log factor in the bound (1.9) could be
removed, and thus the bound (1.9) can be improved as

‖X̄−Xopt‖2 ≲
‖∇X̄− (∇X̄)s‖1√

s
+ τ. (1.10)

In comparison with the bound (1.10), the reconstruction error bound for the enhanced TV
model (1.7) in theorem 3.2 is tighter if the level of noise τ is relatively large and the number
of measurements m is limited. More discussions can be found in section 3.3. Besides, the
RIP level is assumed to satisfy δ < 1/3 in [47] for the TV model (1.2), while we weaken it
to δ < 0.6 for the enhanced TV model (1.7). Though δ < 1/3 can be improved, as remarked
in [47], the reconstruction error bounds (1.9) and (1.10) for the TV model (1.2) tend to be
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infinity if δ→ 0.6 (cf the proof of proposition 3 in [47]). On the other hand, the bounds in
theorems 3.1 and 3.2 for the enhanced TVmodel (1.7) are still reasonably valid when δ→ 0.6;
meanwhile, the upper bound required for α tends to be 0 correspondingly. Thus, as δ→ 0.6,
the bounds (3.11) and (3.13) in theorems 3.1 and 3.2 for the enhanced TVmodel (1.7) assert the
stability of the TV model (1.2) in image reconstruction from a few linear RIP measurements.

Asmentioned, guarantees for non-adaptive measurements require the subsampledmeasure-
ments and the Haar wavelet basis to be sufficiently incoherent. Thus, the mentioned guarantees
in [46, 47] cannot be directly applied to the situation of Fourier measurements. The first results
on image reconstruction fromFouriermeasurements were derived in [36, 51], in which uniform
and non-uniform3 reconstruction guarantees are considered, respectively. More specifically,
the approach in [36] requires a larger number of measurements than [51], while its recon-
struction error bound is sharper than that in [51]. In [36], uniform reconstruction guarantees
were derived for two-dimensional images from noisy Fourier measurements, chosen randomly
according to an inverse square law density. Specifically, from at least m≳ s log3(s) log5(N)
such subsampled Fourier measurements with s≳ log(N), the reconstruction error bound for
the TVmodel (1.2) was derived in the same form of (1.10). We refer to, e.g. [1, 2, 34], for more
discussions. As we focus on the uniform reconstruction from non-adaptive measurements, we
follow the approach in [36] to consider Fourier measurements.

1.5. Outline

The rest of this paper is organized as follows. In the next section, we summarize some notation
and technical backgrounds. In section 3, we establish stable image reconstruction guarantees
for the enhanced TV model (1.7) from non-adaptive subsampled linear RIP measurements
and variable-density subsampled Fourier measurements, respectively. Proofs of the results in
section 3 are presented in section 4. In section 5, we report some numerical results when the
enhanced TVmodel (1.7) is applied to some image reconstruction problems. Different kinds of
images with subsampled Fourier measurements are tested. Finally, we make some conclusions
in section 6.

2. Preliminaries

We first summarize some notation and recall some preliminary technical backgrounds.

2.1. Notation

For any x,y ∈ Rn, let 〈x,y〉= xTy be their inner product, and ‖x‖p (p⩾ 1) be the usual ℓp-norm
of x. For a matrix X ∈ Rm×n, let supp(X) := {( j,k) : Xj,k 6= 0} be the support of X, and ‖X‖0
be the cardinality of supp(X). X is said to be s-sparse if ‖X‖0 ⩽ s. Let

‖X‖p,q :=

 m∑
j=1

(
n∑

k=1

|Xj,k|p
)q/p

1/q

3 In the context of compressed sensing, a uniform reconstruction guarantee indicates that a single random draw of a
given measurement operator suffices to recover all sparse or approximately sparse vectors. In contrast, a non-uniform
recovery guarantee states that a single random draw is sufficient for recovery of a fixed vector.
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be the entry-wise ℓp,q norm (p,q⩾ 1) of X. If p= q, ‖X‖p,p is denoted by ‖X‖p for short.
In particular, the ℓ2,2 norm is also known as the Frobenius norm, which is induced by the
inner product 〈X,Y〉 :=

∑m
j=1

∑n
k=1Xi,jYi,j = tr(XY∗) for any X,Y ∈ Cm×n, where X∗ denotes

the adjoint of the matrix X. For an index set S⊂ {1,2, . . . ,m}×{1,2, . . . ,n}, let XS ∈ Rm×n

be the matrix with the same entries as X on indices S and zero entries on indices Sc. The only
exception is FΩ. We denote by FΩ the restriction of the bivariate discrete Fourier transform
F to a subset Ω⊂ {−N/2+ 1, . . . ,N/2}2. Logarithm without indicating base is with respect
to base 2. For matrices or vectors x and y of the same dimension, x ◦ y denotes the Hadamard
(entry-wise) product between x and y. We use the notation a≲ b to mean that there existsC> 0
such that a⩽ Cb, and likewise for the symbol ≳.

2.2. Haar wavelet system

The Haar wavelet system provides a simple yet powerful sparse approximation of digital
images. The following descriptions on this system can be found in, e.g. [47]. The univari-
ate Haar wavelet system is a complete orthonormal system of square-integrable functions on
the unit interval, consisting of the constant function

H0(t) =

{
1, 0⩽ t< 1,

0, otherwise,

the mother wavelet

H1(t) =

{
1, 0⩽ t< 1/2,

−1, 1/2⩽ t< 1,

and the dyadic dilations and translates of the mother wavelet Hj,k(t) = 2j/2H1(2jt− k), j ∈ N,
0⩽ k< 2j. The bivariateHaar wavelet system is an orthonormal system for the space L2(Q) of
square-integrable functions on the unit squareQ= [0,1)2, and it is derived from the univariate
Haar system by tensor product. The bivariate Haar system consists of the constant function
and all functions

x= (u,v), Hℓ
j,k(x) = 2jHℓ(2jx− k),

for j⩾ 0, k ∈ Z2 ∩ 2jQ, and ℓ ∈ V := {{0,1},{1,0},{1,1}}, where

Hℓ(u,v) = Hℓ1(u)Hℓ2(v)

and ℓ= (ℓ1, ℓ2) ∈ V. Discrete images are isometric to the space ΣN ⊂ L2(Q) of piecewise-
constant functions

ΣN =

{
f ∈ L2(Q) : f(u,v) = cj,k,

j− 1
N

⩽ u<
j
N
,
k− 1
N

⩽ v<
k
N

}
(2.1)

with cj,k = NXj,k. If N= 2n, then the bivariate Haar basis is restricted to the 2n× 2n = N2 basis
functions {Hℓ

j,k : j⩽ n− 1} and identified as some discrete images hℓj,k via (2.1) forms an
orthonormal basis for CN×N. For any given ℓ= (ℓ1, ℓ2) ∈ V, we denote by H the bivariate
Haar transformX 7→ (〈X,hℓj,k〉)j,k. By a slight abuse of notation, we also denote byH the unitary
matrix representing this bivariate Haar transform. That is, we denote byHX the matrix product
that generates (〈X,hℓj,k〉)j,k.

Some properties of the bivariate Haar wavelet system are summarized below, and the proofs
can be found in [47].

10
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Lemma 2.1. Suppose X ∈ CN×N is mean-zero, and let c(k)(X) be the bivariate Haar coefficient
of X having the kth largest magnitude, or the entry of the bivariate Haar transformHX having
the kth largest magnitude. Then, for all k⩾ 1, |c(k)(X)|⩽ C̃‖∇X‖1/k, where C̃> 0 is some
constant.

Lemma 2.2. Let N= 2n. For any indices (j, k) and ( j,k+ 1), there are at most 6 n bivariate
Haar wavelets which are not constant on these indices, i.e. |hℓj,k( j,k+ 1)− hℓj,k( j,k)|> 0.

Lemma 2.3. The bivariate Haar wavelets satisfy ‖∇hℓj,k‖1 ⩽ 8 for all j,k, ℓ.

2.3. Discrete Fourier system

In addition to general RIP measurements, we particularly investigate Fourier measurements.
Let N= 2n be a power of 2, where n ∈ N+. The following facts of Fourier basis and transform
in the context of imaging can be found in, e.g. [36]. The univariate discrete Fourier basis of
CN consists of vectors

φk(t) =
1√
N
ei2π tk/N, −N/2+ 1⩽ t⩽ N/2,

indexed by the discrete frequencies in the range of −N/2+ 1⩽ k⩽ N/2. The bivariate dis-
crete Fourier basis of CN×N is a tensor product of univariate bases, i.e.

φj,k(u,v) =
1
N
ei2π (ju+kv)/N, −N/2+ 1⩽ u,v⩽ N/2,

indexed by the discrete frequencies in the range of −N/2+ 1⩽ j,k⩽ N/2.
We denote by F the bivariate discrete Fourier transform X 7→ (〈X,φk1,k2〉)k1,k2 . Again, by a

slight abuse of notation, we denote by F the unitary matrix representing this linear map. That
is, we denote byFX the matrix product that generates (〈X,φk1,k2〉)k1,k2 . Moreover, since limited
measurements are considered, we denote by FΩ the restriction of F to a subset of frequencies
Ω⊂ {−N/2+ 1, . . . ,N/2}2.

3. Main results

We now establish reconstruction guarantees for the enhanced TV model (1.7) from non-
adaptive linear RIP measurements and variable-density Fourier measurements, respectively.
The following proposition generalizes theorem 4.1 in [4] for signal recovery, and it allows us
to bound the norm of an image D when it is close to the null space of an RIP operator.

Proposition 3.1. Let γ ⩾ 1, k> 0, δ < 0.6, β1 > 0, β2 > 0, and ε⩾ 0, and letA be some linear
operator A : Cn1×n2 → Cm̃, where n1,n2, m̃ ∈ N+. Suppose that A has the RIP of order k+
4kγ2 and level δ, and that the image D ∈ CN×N satisfies the tube constraint

‖AD‖2 ⩽ ε. (3.1)

Suppose further that for a subset S of cardinality |S|⩽ k, D satisfies the cone constraint

‖DSc‖1 ⩽ γ‖DS‖1 −
β1

2
‖D‖22 +σ+β2〈E1,E2〉, (3.2)

where E1,E2 could be scalars, vectors, or matrices, and E2 is assumed to satisfy ‖E2‖2 = ‖D‖2.
Here ‖ · ‖2 denotes the absolute value for scalars, the usual ℓ2 vector norm for vectors, and

11



Inverse Problems 39 (2023) 075005 C An et al

the ℓ2,2 norm (Frobenius norm) for matrices. If β2 satisfies the posterior verification

β2 ⩽
γ
√
k

2K2‖E1‖2
, (3.3)

then it holds that

‖D‖2 ⩽

√
γ
√
kK1

β1K2
ε+

2
β1
σ ≲

√
γ
√
k

β1
ε+

1
β1
σ, (3.4)

where

K1 :=
3

2
√
1− δ−

√
1+ δ

and K2 :=

√
1+ δ

4

(
K1 +

1√
1+ δ

)
.

Furthermore, we have

‖D‖1 ⩽
(2K2 + 1)γ

√
k+ 2K2

√
k

2K2

√
γ
√
kK1

β1K2
ε+

2
β1
σ+σ

≲ γ
√
k

√
γ
√
k

β1
ε+

1
β1
σ+σ.

(3.5)

Corollary 3.1. There is a linear term of σ in (3.5). If ‖D‖2 ⩾
√

2σ/β1, which is compatible
with (3.4), then this linear term can be removed. This corollary will be proved after proposition
3.1.

Remark 3.1. In the proof of proposition 3.1, we need to ensure
√
1− δ−

√
1+ δ/2> 0, and

this is where the requirement δ < 0.6 for the RIP level stems from. Since

lim
δ→0.6

K1

K2
= lim

δ→0.6

4√
1+ δ+ 1/K1

= 10, (3.6)

the bounds on ‖D‖2 and ‖D‖1 are still reasonable as δ→ 0.6. As the whole analysis below
rests upon proposition 3.1, this fact (3.6) suggests that the following reconstruction error
bounds (3.11), (3.13) and (3.18) are all reasonable as δ→ 0.6.

Remark 3.2. If A is assumed to have the RIP of order 5kγ2 ⩾ k+ 4kγ2, then proposition 3.1
still holds. Thus, we assume the order 5kγ2 for simplicity in the following theorems.

For any image X ∈ CN×N, its derivatives Xx and Xy belong to C(N−1)×N and CN×(N−1),
respectively. Thus, it is convenient to consider the matrices Π0 and Π0 obtained from a matrix
Π by concatenating a row of zeros to the bottom and top of Π, respectively. More concretely,
for a matrix Π ∈ C(N−1)×N, we denote by Π0 ∈ CN×N the augmented matrix with entries

(Π0)j,k =

{
0, j= 1,

Πj−1,k, 2⩽ j⩽ N.

Similarly, we denote by Π0 ∈ CN×N the matrix constructed from adding a row of zeros to the
bottom of Π. For a linear operator A : C(N−1)×N → Cm with [A(X)]j = 〈Aj,X〉, we denote by
A0 : CN×N → Cm the linear operator with [A0(X)]j = 〈A0

j ,X〉. We denote byA0 : CN×N → Cm

similarly. It was shown in [47] that the entire image and its gradients could be related as follows.

Lemma 3.1 ([47]). Given X ∈ CN×N and Π ∈ C(N−1)×N,

〈Π,Xx〉= 〈Π0,X〉− 〈Π0,X〉 and 〈Π,XTy 〉= 〈Π0,XT〉− 〈Π0,X
T〉,

where XT denotes the (non-conjugate) transpose of the matrix X.

12
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3.1. Reconstruction from non-adaptive linear RIP measurements

We are prepared to state our first result on stable image reconstruction from non-adaptive linear
RIP measurements.

Theorem 3.1. Let N= 2n be a power of two, where n ∈ N+. Let A : C(N−1)×N → Cm1 and
A ′ : C(N−1)×N → Cm1 be such that the concatenated operator [A,A ′] has the RIP of order 5s
and level δ < 0.6. Let H : CN×N → CN×N be the orthonormal bivariate Haar wavelet trans-
form, and B : CN×N → Cm2 be such that the composite operator BH∗ : CN×N → Cm2 has the
RIP of order 2s+ 1 and level δ < 1. Let m= 4m1 +m2, and consider the linear operator
M : CN×N → Cm with components

M(X) =
(
A0(X),A0(X),A ′0(XT),A ′

0(X
T),B(X)

)
. (3.7)

Let X̄ ∈ CN×N be an image and Xopt the solution to the enhanced TV model (1.7) with M
defined as (3.7). If α satisfies

α⩽
√
s

2K2‖∇Xopt‖2
, (3.8)

then we have the stable gradient reconstruction results

‖∇X̄−∇Xopt‖2 ≲
√√

s
α
τ +

1
α
‖∇X̄− (∇X̄)s‖1 (3.9)

and

‖∇X̄−∇Xopt‖1 ≲
√
s

√√
s
α
τ +

1
α
‖∇X̄− (∇X̄)s‖1 + ‖∇X̄− (∇X̄)s‖1, (3.10)

and the stable image reconstruction result

‖X̄−Xopt‖2 ≲ log

(
N2

s

)√√
s
α
τ +

1
α
‖∇X̄− (∇X̄)s‖1

+ log

(
N2

s

)
‖∇X̄− (∇X̄)s‖1√

s
+ τ.

(3.11)

Corollary 3.2. Enlightened by corollary 3.1, if

‖∇X̄−∇Xopt‖2 ⩾
√

2
α
‖∇X̄− (∇X̄)s‖1,

which is compatible with (3.9), then the linear term ‖∇X̄− (∇X̄)s‖1 in (3.10) and hence
the term log(N

2

s )
∥∇X̄−(∇X̄)s∥1√

s in (3.11) can be removed. This corollary will be proved after
theorem 3.1.

Remark 3.3. The proof of theorem 3.1 is inspired by the proof in [47] for the TV model (1.2),
in which it was conjectured that the 4m1 measurements derived fromA in the construction (3.7)
ofM are artifacts of the proof. The componentsA0(X),A0(X),A ′0(XT), andA ′

0(X
T) are only

used for deriving the stable gradient reconstruction bounds (3.9) and (3.10). On the other hand,
component B(X) only helps us derive the bound (3.11) from (3.9) and (3.10).

If more measurements are allowed, then the bound (3.11) can be further improved, the
requirement (3.8) on α can be relaxed, and the artificial components in M can be removed.

Theorem 3.2. Let N= 2n be a power of two, where n ∈ N+. Let H : CN×N → CN×N be the
orthonormal bivariate Haar wavelet transform, and M : CN×N → Cm be such that the com-
posite operator MH∗ : CN×N → Cm has the RIP of order Cs log3(N) and level δ < 0.6. Let
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X̄ ∈ CN×N be a mean-zero image or an image containing some zero-valued pixels, and Xopt be
the solution to the enhanced TV model (1.7). If α satisfies

α⩽
√

48s log(N)
K2‖∇Xopt‖2

, (3.12)

then we have

‖X̄−Xopt‖2 ≲
√√

s
α
τ +

1
α
‖∇X̄− (∇X̄)s‖1. (3.13)

Remark 3.4. The RIP requirements in both theorems above indicate that the linear measure-
ments should be generated from standard RIP matrix ensembles, which are incoherent with
the Haar wavelet system. Many classes of randommatrices can be used to generate RIP matrix
ensembles. For example, a matrix inRm×N2

with i.i.d. normalized Gaussian random entries has
a small RIP constant δs < c with high probabilities if m≳ c−2s log(N2/s), as shown in [11].
Similar results were extended to sub-Gaussian matrices in [43]. If m≳ s log4(N), then it was
proved in [12, 54] that the RIP holds with overwhelming probabilities for a partial Fourier
matrix FΩ ∈ Rm×N2

. The RIP also holds for randomly generated circulant matrices (see [52])
and randomly subsampled bounded orthonormal systems (see [53]). Most of these mentioned
measurements are incoherent with the Haar wavelet system, but the partial Fourier matrix with
uniformly subsampled rows is an exception. Thus, some specific sampling strategies for Four-
ier measurements should be considered. For example, it was asserted in [35] that FΩ ∈ Rm×N2

with m≳ s log4(N) and randomized column signs has the RIP; it was also shown in [36] that
FΩ with rows subsampled according to some power-law densities is incoherent with the Haar
wavelet system after preconditioning.

3.2. Reconstruction from variable-density Fourier measurements

As shown in [36], if the measurements are sampled according to appropriate power-law densit-
ies, then they are incoherent with the Haar wavelet system. We consider a particular variable-
density sampling strategy proposed in [36] and derive a partial stable image reconstruction
theorem tailored for Fourier measurements. Following the idea of [36], our guarantees are
based on a weighted ℓ2-norm in measuring noise such that high-frequency measurements
have a higher sensitivity to noise; that is, the ℓ2-norm in the constraint ‖MX− y‖2 ⩽ τ of the
enhanced TV model (1.7) is replaced by a weighted ℓ2-norm model. For the particular scen-
ario with Fourier measurements, the general linear operatorM is specified asFΩ, which is the
restriction of the Fourier transform matrix to a set Ω of frequencies as defined in section 2.3.

Theorem 3.3. Let N= 2n be a power of 2, where n ∈ N+. Let m and s satisfy s≳ log(N) and

m≳ s log3(s) log5(N). (3.14)

Select m frequencies {(ω j
1,ω

j
2)}mj=1 ⊂ {−N/1+ 2, . . . ,N/2}2 i.i.d. according to

P[(ω j
1,ω

j
2) = (k1,k2)] = CNmin

(
C,

1
k21 + k22

)
=: η(k1,k2) (3.15)

for−N/2+ 1⩽ k1,k2 ⩽ N/2, where C is an absolute constant and CN is chosen such that η is
a probability distribution. Consider the weight vector ρ= (ρj)

m
j=1 with ρj = [1/η(ω j

1,ω
j
2)]

1/2.
Then we have the following assertion for all mean-zero or zero-valued pixel-containing images
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X̄ ∈ CN×N with probability exceeding 1−N−C log3(s): given noisy partial Fourier measure-
ments b= FΩX̄+ e, if

α⩽
√

48s log(N)
K2‖∇Xopt‖2

, (3.16)

then the solution Xopt to the model

min
X∈CN×N

‖∇X‖1 −
α

2
‖∇X‖22 s.t. ‖ρ ◦ (FΩX− b)‖2 ⩽ τ

√
m (3.17)

satisfies

‖X̄−Xopt‖2 ≲
√√

s
α
τ +

1
α
‖∇X̄− (∇X̄)s‖1. (3.18)

3.3. Further discussion

We supplement more details about the theoretical results presented in sections 3.1 and 3.2.
The a posterior verification on α. Three conditions (3.8), (3.12) and (3.16) on α are

required in theorems 3.1, 3.2 and 3.3, respectively. Determining the value of α is possible only
if we have a priori estimation on ‖Xopt‖2. Thus, these conditions can be interpreted as a pos-
terior verification because they can be verified onceXopt is obtained by solving themodel (1.7).
In practice, we solve the model (1.7) numerically and thus obtain an approximate solution,
denoted by X∗, subject to a preset accuracy ϵ> 0. That is, ‖Xopt −X∗‖2 ⩽ ϵ. Then, if

α⩽
√
s

2K2(‖∇X∗‖2 + ϵ)
,

then (3.8) is guaranteed; if

α⩽
√

48s log(N)
K2(‖∇X∗‖2 + ϵ)

,

then (3.12) and (3.16) are satisfied.
The RIP level δ< 0.6 in theorems 3.1 and 3.2. The bound 0.6 is sharp, as we need to

ensure
√
1− δ−

√
1+ δ/2> 0 (cf proof in section 4.1). For the reconstruction guarantees

derived in [47] for the TVmodel (1.2), the level is assumed to satisfy δ < 1/3, and it is not sharp
as remarked in [47]. Though δ < 1/3 can be improved, the reconstruction error bound in [47]
for the TV model (1.2) tends to be infinity if δ→ 0.6. In light of remark 3.1, the bounds (3.11)
and (3.13) are still valid in this case, and the upper bound required for α tends to 0 correspond-
ingly with consideration of the behavior of K2. That is, theorems 3.1 and 3.2 can guarantee
the stability of the TV model (1.2) when δ→ 0.6, resulting in reconstruction error bounds in
forms of (3.11) and (3.13).

The required amountm of Fourier measurements in theorem 3.3. The RIP level δ does
not appear explicitly in theorem 3.3, while we shall assume m≳ sδ−2 log3(s) log5(N) and the
constant δ is eliminated in such an inequality with ≳; see our proof in section 4.4. The least
required amount m for the TV model (1.2) shall also satisfy this relation with s, N, and δ, as
proved in [36]. Since the upper bound on the RIP level δ is enlarged from 1/3 for the TV
model (1.2) (see [36]) to 0.6 for the enhanced TV model (1.7), the least amount of Fourier
measurements required for the enhanced TV model (1.7) should be (0.6/(1/3))−2 ≈ 30.86%
of the least amount of Fourier measurements required in [36] for the TV model (1.2).

Inconsistency when α → 0. The enhanced TV regularization (1.6) tends to be the aniso-
tropic TV term as α→ 0. At the same time, the reconstruction error bounds (3.11), (3.13),
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and (3.18) do not reduce to the corresponding bounds (1.9) and (1.10) for the TV model (1.2).
Note that the bounds (3.13) and (3.18) are of the same form. To explain this inconsistency,
note that proposition 3.1 is a pillar of the proofs of theorems 3.1, 3.2, and 3.3. In contrast,
the proof for the TV model (1.2) in [47] relies on the following fact: if D satisfies the tube
constraint (3.1) and the cone constraint ‖DSc‖1 ⩽ γ‖DS‖1 +σ, then it was shown in [47] that

‖D‖2 ≲
σ

γ
√
k
+ ε and ‖D‖1 ≲ σ+ γ

√
kε. (3.19)

Indeed, the left-hand side of the estimation (4.2) in the proof of proposition 3.1 contains a
quadratic term ‖D‖22 and a linear term ‖D‖2, and only the linear term remains if β1,β2 → 0,
which then leads to the same result as (3.19). However, in the proof of proposition 3.1, we
remove this linear term and keep the quadratic term, and hence the obtained result cannot be
reduced to the result (3.19) as β1,β2 → 0. Such an inconsistent situation is also encountered
by the springback model in [4].

Comparison between (1.10) and (3.13). We are interested in whether or not the
bound (3.13) (as well as the bound (3.18), which shares the same form as (3.13)) can be tighter
than (1.10) in the sense of√√

s
α
τ +

1
α
‖∇X̄− (∇X̄)s‖1 ≲

‖∇X̄− (∇X̄)s‖1√
s

+ τ, (3.20)

with a given α> 0. If the image X̄ is known to have an s-sparse gradient, then the compar-
ison (3.20) is reduced to

√
s≲ ατ . As s is fixed in this scenario, we can claim that the estima-

tion (3.13) is tighter than the estimation (1.10) in the sense of (3.20) if τ ≳√
s/α, i.e. the level

of noise τ is relatively large. If the sparsity of∇X̄ is not assumed, but the linear measurements
are noise-free, i.e. τ = 0, then the comparison (3.20) is reduced to

s/‖∇X̄− (∇X̄)s‖1 ≲ α, (3.21)

in which the left-hand side of (3.21) is an increasing function of s. In order to discern the
scenario where (3.21) holds, a key fact from remark 3.4 should be noticed: for RIP measure-
ments mentioned there, a small number m of measurements admits an RIP with a small s. The
bound O(s log(N2/s)) for Gaussian measurements appears not to be monotonic with respect
to s. On the other hand, with the implicit constant factors derived in [54], this bound is indeed
monotonically increasing with respect to s. Thus, if the number of measurements m is limited,
which only renders an RIP with a small s, then (3.21) holds. This situation coincides with the
intuition that, as the term ‖∇X̄− (∇X̄)s‖1 � 1 for many digital images, especially when the
number of measurements is limited (so that s is small), taking a square root shall lead to a
smaller bound than that without doing so.

Together with both scenarios, we can claim that if the level of noise τ is relatively large and
the number of measurements m is limited, then the enhanced TV model (1.7) performs better
than the TV model (1.2) in the sense of (3.20), because (3.20) is guaranteed to hold when√√

s
α
τ +

√
1
α
‖∇X̄− (∇X̄)s‖1 ≲

‖∇X̄− (∇X̄)s‖1√
s

+ τ,

and we can study
√√

s
α τ ≲ τ and

√
1
α‖∇X̄− (∇X̄)s‖1 ≲ ∥∇X̄−(∇X̄)s∥1√

s separately.
This comparison can be analogously extended to other cases for which the corresponding

reconstruction error bounds are also linear with respect to terms ‖∇X̄− (∇X̄)s‖1/
√
s and τ .

Such examples include the model in [39], which has the regularization term ‖X‖TVa −‖X‖TVi .
For the model in [39], it seems that reconstruction guarantees leading to an error bound without
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the log factor log(N2/s) are still missing. Note that this log factor also occurs in the bound (1.9)
for the TVmodel (1.2) and the bound (3.11) for the enhanced TVmodel (1.7), but it is removed
if the required RIP order increases from O(s) to O(s log3(N)), and then both bounds can be
improved to (1.10) and (3.13), respectively. Reconstruction guarantees for the model in [39]
have been investigated in [37]. However, the derived error bound (see theorem 3.8 in [37])
still fails to remove the log factor log(N2/s), despite that the subsampled measurements are
required to have the RIP of orderO(s2 log(N))with a more complicated level δ which depends
on N, s, and the constant C̃ in lemma 2.1.

4. Proofs

In this section, we present the complete proofs for the theoretical results in section 3.

4.1. Proofs of proposition 3.1 and corollary 3.1

Proof of proposition 3.1. We arrange the indices in Sc in order of decreasing magnitudes (in
absolute value) ofDSc and divide Sc into subsets of size 4kγ2, i.e. Sc = S1

⋃
S2
⋃
· · ·
⋃
Sr, where

r=
⌊
N2−|S|
4kγ2

⌋
. In other words, DSc = DS1 +DS2 + · · ·+DSr , where DS1 consists of the 4kγ2

largest-magnitude components of D over Sc, DS2 consists of the next 4kγ2 largest-magnitude
components of D over Sc\S1, and so forth. As the magnitude of each component of DSj is less
than the average magnitude ‖DSj−1‖1/(4kγ2) of components of DSj−1 , we have

‖DSj‖22 ⩽ 4kγ2

(‖DSj−1‖1
4kγ2

)2

=
‖DSj−1‖21
4kγ2

, j = 2,3, . . . ,r.

Thus, combining ‖DSj‖2 ⩽
∥DSj−1∥1

2γ
√
k

with the cone constraint (3.2), we have

r∑
j=2

‖DSj‖2 ⩽
1

2γ
√
k
‖DSc‖1 ⩽

‖DS‖1
2
√
k

− β1

4γ
√
k
‖D‖22 +

σ

2γ
√
k
+

β2

2γ
√
k
〈E1,E2〉.

The assumption |S|⩽ k leads to ‖DS‖1 ⩽
√
|S|‖DS‖2 ⩽

√
k‖DS‖2 ⩽

√
k‖DS+DS1‖2,

hence we have
r∑

j=2

‖DSj‖2 ⩽
‖DS+DS1‖2

2
− β1

4γ
√
k
‖D‖22 +

σ

2γ
√
k
+

β2

2γ
√
k
〈E1,E2〉. (4.1)

Together with this bound (4.1), the tube constraint (3.1), and the RIP of A, we have

ε⩾ ‖AD‖2 ⩾ ‖A(DS+DS1)‖2 −
r∑

j=2

‖ADSj‖2

⩾
√
1− δ‖DS+DS1‖2 −

√
1+ δ

r∑
j=2

‖DSj‖2

⩾
√
1− δ‖DS+DS1‖2 −

√
1+ δ

(
‖DS+DS1‖2

2
− β1‖D‖22

4γ
√
k

+
σ

2γ
√
k
+

β2

2γ
√
k
〈E1,E2〉

)
=

(√
1− δ−

√
1+ δ

2

)
‖DS+DS1‖2 +

β1
√
1+ δ‖D‖22
4γ

√
k

− σ
√
1+ δ

2γ
√
k

− β2
√
1+ δ

2γ
√
k

〈E1,E2〉.
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The assumption δ < 0.6 ensures
√
1− δ−

√
1+ δ/2> 0. Hence, we have

‖DS+DS1‖2 ⩽
2

2
√
1− δ−

√
1+ δ

(
ε− β1

√
1+ δ‖D‖22
4γ

√
k

+
σ
√
1+ δ

2γ
√
k

+
β2
√
1+ δ

2γ
√
k

〈E1,E2〉
)
.

As ‖D‖2 is bounded by the sum of ‖DS+DS1‖2 and
∑r

j=2 ‖DSj‖2, it satisfies

‖D‖2 ⩽
3
2
‖DS+DS1‖2 −

β1

4γ
√
k
‖D‖22 +

σ

2γ
√
k
+

β2

2γ
√
k
〈E1,E2〉

⩽ 3

2
√
1− δ−

√
1+ δ

ε+

(
3

2
√
1− δ−

√
1+ δ

+
1√
1+ δ

)
·(

−β1
√
1+ δ

4γ
√
k

‖D‖22 +
√
1+ δ

2γ
√
k
σ+

β2
√
1+ δ

2γ
√
k

〈E1,E2〉
)

:= K1ε−
β1K2

γ
√
k
‖D‖22 +

2K2

γ
√
k
σ+

2β2K2

γ
√
k
〈E1,E2〉.

Thus, we have the quadratic inequality

β1K2

γ
√
k
‖D‖22 + ‖D‖2 −

2β2K2

γ
√
k
〈E1,E2〉−K1ε−

2K2

γ
√
k
σ ⩽ 0. (4.2)

The requirement (3.3) on β2 ensures that

‖D‖2 −
2β2K2

γ
√
k
〈E1,E2〉⩾ ‖D‖2 −

〈
E1

‖E1‖2
,E2

〉
⩾ 0,

where the last inequality is due to Cauchy–Schwarz inequality and ‖E2‖2 = ‖D‖2. Then, we
have

β1K2

γ
√
k
‖D‖22 −K1ε−

2K2

γ
√
k
σ ⩽ 0,

which yields the estimation (3.4). Finally, we derive (3.5). As |S|⩽ k, we have ‖DS‖1 ⩽√
k‖DS‖2. Then, together with the requirement (3.3) on β2 and the cone constraint (3.2), we

have

‖D‖1 ⩽ (γ+ 1)‖DS‖1 −
β1

2
‖D‖22 +σ+β2〈E1,E2〉⩽ (γ+ 1)‖DS‖1 +σ+

γ
√
k

2K2
‖D‖2

⩽ (γ+ 1)
√
k‖DS‖2 +σ+

γ
√
k

2K2
‖D‖2 ⩽ (γ+ 1)

√
k‖D‖2 +σ+

γ
√
k

2K2
‖D‖2

=
(2K2 + 1)γ

√
k+ 2K2

√
k

2K2
‖D‖2 +σ,

(4.3)

which completes the proof of proposition 3.1.

Proof of corollary 3.1. In the second inequality of (4.3), we use the fact −β1
2 ‖D‖

2
2 ⩽ 0. If

‖D‖2 satisfies ‖D‖2 ⩾
√

2σ/β1, then −β1
2 ‖D‖

2
2 +σ ⩽ 0 and it follows from (4.3) that

‖D‖1 ⩽ (γ+ 1)‖DS‖1 −
β1

2
‖D‖22 +σ+β2〈E1,E2〉

⩽ (γ+ 1)‖DS‖1 +
γ
√
k

2K2
‖D‖2 ⩽

(2K2 + 1)γ
√
k+ 2K2

√
k

2K2
‖D‖2,

which completes the proof of corollary 3.1.
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4.2. Proof of theorem 3.1 and corollary 3.2

We first prove the stable gradient reconstruction results (3.9) and (3.10), and then obtain the
stable image reconstruction result (3.11) with the aid of a strong Sobolev inequality. The fol-
lowing Sobolev inequality was derived in [47] for images with multivariate generalization
given in [46].

Lemma 4.1 (strong Sobolev inequality). Let B : CN×N → Cm be a linear map such that
BH∗ : CN×N → Cm has the RIP of order 2s+ 1 and level δ < 1, where H : CN×N → CN×N is
the bivariate Haar transform. Suppose that D ∈ CN×N satisfies the tube constraint ‖BD‖2 ⩽ ε.
Then

‖D‖2 ⩽ C2

[(
‖∇D‖1√

s

)
log

(
N2

s

)
+ ε

]
.

Proof of theorem 3.1. The proof is divided into the stable gradient and image reconstructions,
respectively.

Stable gradient reconstruction.We plan to apply proposition 3.1 to the term∇(Xopt − X̄).
LetV= Xopt − X̄ and L= (Vx,VT

y ). For convenience, let P denote the mapping of indices which
maps the index of a nonzero entry in ∇V to its corresponding index in L. By the definition of
∇, L has the same norm as ∇V, i.e. ‖L‖2 = ‖∇V‖2 and ‖L‖1 = ‖∇V‖1. Thus, it suffices to
apply proposition 3.1 to L. Let A1,A2, . . . ,Am1 ,A

′
1,A

′
2, . . . ,A

′
m1

be such that [A(Z)]j = 〈Aj,Z〉
and [A ′(Z)]j = 〈A ′

j ,Z〉.

• Cone constraint. Let S denote the support of the largest s entries of ∇X̄. On one hand, it
holds that

‖∇Xopt‖1 −
α

2
‖∇Xopt‖22 ⩽ ‖∇X̄‖1 −

α

2
‖∇X̄‖22

= ‖(∇X̄)S‖1 + ‖(∇X̄)Sc‖1 −
α

2
‖∇X̄‖22.

On the other hand, we have

‖∇Xopt‖1 −
α

2
‖∇Xopt‖22

=‖(∇X̄)S+(∇V)S‖1 + ‖(∇X̄)Sc +(∇V)Sc‖1 −
α

2
‖∇X̄+∇V‖22

⩾‖(∇X̄)S‖1 −‖(∇V)S‖1 + ‖(∇V)Sc‖1 −‖(∇X̄)Sc‖1

− α

2

(
‖∇X̄‖22 + 2〈∇X̄,∇V〉+ ‖∇V‖22

)
.

Thus, we obtain

‖(∇V)Sc‖1 ⩽ ‖(∇V)S‖1 + 2‖(∇X̄)Sc‖1 +
α

2
‖∇V‖22 +α〈∇X̄,∇V〉

= ‖(∇V)S‖1 + 2‖∇X̄− (∇X̄)s‖1 −
α

2
‖∇V‖22 +α〈∇Xopt,∇V〉.

As L contains all the same nonzero entries as ∇V, it satisfies the following cone constraint:

‖LP(S)c‖1 ⩽ ‖LP(S)‖1 + 2‖∇X̄− (∇X̄)s‖1 −
α

2
‖L‖22 +α〈∇Xopt,∇V〉.

• Tube constraint.We note that V satisfies a tube constraint as

‖MV‖22 = ‖(MXopt − y)− (MX̄− y)‖22 ⩽ 2‖MXopt − y‖22 + 2‖MX̄− y‖22 ⩽ 4τ 2.

19



Inverse Problems 39 (2023) 075005 C An et al

Then, it follows from lemma 3.1 that

|〈Aj,Vx〉|2 = |〈[Aj]0,V〉− 〈[Aj]0,V〉|2 ⩽ 2|〈[Aj]0,V〉|2 + 2|〈[Aj]0,V〉|2

and

|〈A′
j ,V

T
y 〉|2 = |〈[A′

j ]
0,VT〉− 〈[A′

j ]0,V
T〉|2 ⩽ 2|〈[A′

j ]
0,VT〉|2 + 2|〈[A′

j ]0,V
T〉|2.

Thus, L also satisfies a tube constraint:

‖[A A′]L‖22 =
m∑
j=1

|〈Aj,Vx〉|2 + |〈A′
j ,V

T
y 〉|2 ⩽ 2‖M(V)‖22 ⩽ 8τ 2.

By virtue of proposition 3.1 with γ= 1, k= s, β1 = β2 = α, σ = 2‖∇X̄− (∇X̄)s‖1, ε=
2
√
2τ , E1 =∇Xopt and E2 =∇V, the requirement (3.8) of α ensures that

‖∇Xopt −∇X̄‖2 = ‖L‖2 ⩽

√
2
√
2
√
sK1

αK2
τ +

4
α
‖∇X− (∇X)s‖1.

Furthermore, by (3.5), we have ‖∇Xopt −∇X̄‖1 = ‖L‖1 and

‖L‖1 ⩽
(4K2 + 1)

√
s

2K2

√
2
√
2
√
sK1

αK2
τ +

4
α
‖∇X̄− (∇X̄)s‖1 + 2‖∇X̄− (∇X̄)s‖1, (4.4)

which completes the proof of the stable gradient reconstruction results (3.9) and (3.10).

Stable image reconstruction. We now apply the strong Sobolev inequality given in lemma
4.1 to Xopt − X̄. As ‖B(Xopt − X̄)‖2 ⩽ ‖M(Xopt − X̄)‖2 ⩽ 2τ , we have

‖Xopt − X̄‖2 ≲ log

(
N2

s

)(
‖∇Xopt −∇X̄‖1√

s

)
+ τ.

Together with the bound (3.10), we have the stable image reconstruction result (3.11).

Proof of corollary 3.2. If ‖∇X̄−∇Xopt‖2 ⩾
√

2
α‖∇X̄− (∇X̄)s‖1, then it follows from corol-

lary 3.1 that the linear term of ‖∇X̄− (∇X̄)s‖1 in the estimation (4.4) can be removed. Thus,
from (4.4) to (3.11), the term log(N

2

s )
∥∇X̄−(∇X̄)s∥1√

s in (3.11) can be also removed.

4.3. Proof of theorem 3.2

We apply proposition 3.1 to c=HV as opposed to ∇V. Some properties of the bivariate Haar
wavelet system, characterized as lemmas 2.1, 2.2, and 2.2, are needed in the proof. Besides, a
classical Sobolev inequality weaker than the strong Sobolev inequality in lemma 4.1 is needed.

Lemma 4.2 ([47]). Let X ∈ CN×N be a mean-zero image or contain some zero-valued pixels.
Then

‖X‖2 ⩽ ‖∇X‖1. (4.5)

Proof of theorem 3.2. Let V= Xopt − X̄, and apply proposition 3.1 to c=HV, where c(1) :=
c(1)(V) denotes the Haar coefficient corresponding to the constant wavelet, and c( j) := c( j)(V)
(j⩾ 2) denotes the ( j− 1)-st largest-magnitude Haar coefficient among the remaining. We use
this ordering because lemma 2.1 applies only to mean-zero images. Let h( j) denote the Haar
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wavelet associated with c( j). We have assumed that the composite operator MH∗ : CN×N →
Cm has the RIP of order Cs log3(N) and level δ < 0.6, and we now derive the constant C.

• Cone constraint on c=HV. As shown in section 4.2, we have

‖(∇V)Sc‖1 ⩽ ‖(∇V)S‖1 + 2‖∇X̄− (∇X̄)s‖1 −
α

2
‖∇V‖22 +α〈∇Xopt,∇V〉. (4.6)

Recall that S is the index set of s largest-magnitude entries of∇V. It follows from lemma 2.2
that the setΩ of wavelets which are non-constant over S has the cardinality at most 6s log(N),
i.e. |Ω|⩽ 6s log(N). Decompose V as

V=
∑
j

c(j)h(j) =
∑
j∈Ω

c(j)h(j) +
∑
j∈Ωc

c(j)h(j) =: VΩ +VΩc .

Because of the linearity of ∇, we have ∇V=∇VΩ +∇VΩc . By the construction of Ω, we
have (∇VΩc)S = 0, which leads to (∇V)S = (∇VΩ)S. Then, it follows from lemma 2.3 that

‖(∇V)S‖1 = ‖(∇VΩ)S‖1 ⩽ ‖∇VΩ‖1 ⩽
∑
j∈Ω

|c(j)|‖∇h(j)‖1 ⩽ 8
∑
j∈Ω

|c(j)|.

Let k= 6s log(N), ‖cΩ‖1 and ‖cΩc‖1 denote
∑

j∈Ω |c( j)| and
∑

j∈Ωc |c( j)|, respectively. Con-

cerning the decay of the wavelet coefficients in lemma 2.1, we have |c( j+1)|⩽ C̃‖∇V‖1/j.
Together with the cone constraint (4.6) for ∇V, we have

‖cΩc‖1 ⩽
N2∑

j=s+1

|c(j)|⩽ C̃
N2∑

j=s+1

‖∇V‖1
j− 1

(⋄)
⩽ C′ log

(
N2

s

)

⩽C′ log

(
N2

s

)(
2‖(∇V)S‖1 + 2‖∇X̄− (∇X̄)s‖1 −

α

2
‖∇V‖22 +α〈∇Xopt,∇V〉

)
⩽C′ log

(
N2

s

)(
16‖cΩ‖1 + 2‖∇X̄− (∇X̄)s‖1 −

α

2
‖∇V‖22 +α‖∇Xopt‖2‖∇‖2‖V‖2

)
(∗)
⩽C′ log

(
N2

s

)(
16‖cΩ‖1 + 2‖∇X̄− (∇X̄)s‖1 −

α

2
‖∇V‖22 +α

√
8‖∇Xopt‖2‖V‖2

)
,

where (�) is due to the property of partial sum of harmonic series [22], and (∗) is due to the
fact ‖∇‖22 ⩽ 8 [13]. As we prepare to apply proposition 3.1 to c=HV, we need to bound
‖∇V‖2 below in terms of ‖V‖2 = ‖c‖2, where ‖V‖2 = ‖c‖2 is due to Parseval’s identity
and the fact that {h( j)} forms an orthonormal basis for CN×N. As ‖∇V‖2 ⩾ 1√

2N
‖∇V‖1, the

classical Sobolev inequality (4.5) implies

‖∇V‖2 ⩾
1√
2N

‖V‖2. (4.7)

Thus we have

‖cΩc‖1 ⩽C ′ log

(
N2

s

)(
16‖cΩ‖1 + 2‖∇X̄− (∇X̄)s‖1 −

α‖c‖22
4N2

+α
√
8‖∇Xopt‖2‖c‖2

)
.

(4.8)
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• Tube constraint ‖MH∗c‖2 ⩽ 2τ .As X̄ and Xopt are in the feasible region of the model (1.7),
for c=HV=HXopt −HX̄, we have

‖MH∗c‖2 = ‖MXopt −MX̄‖2 ⩽ ‖MXopt − y‖2 + ‖MX̄− y‖2 ⩽ 2τ.

Under the derived cone and tube constraints on c, along with the RIP condition on
MH∗, theorem 3.2 is proved by applying proposition 3.1 and using γ = 16C ′ log(N2/s)⩽
32C ′ log(N), k= 6s log(N), σ = 2C ′ log

(
N2/s

)
‖∇X̄− (∇X̄)s‖1, E1 =

√
8‖∇Xopt‖2, E2 =

‖c‖2, β1 = αC ′ log
(
N2/s

)
/(2N2), and β2 = αC ′ log

(
N2/s

)
. In fact, 5kγ2 with both partic-

ular k and γ leads to the required RIP order Cs log3(N) for MH∗. Together with all these
factors and proposition 3.1, we know that if

α⩽
√
8
√

6s log(N)
K2‖∇Xopt‖2

,

then it holds that

‖V‖2 = ‖c‖2 ⩽

√
64N2

√
6s log(N)K1

αK2
τ +

8N2

α
‖∇X̄− (∇X̄)s‖1,

which leads to the estimation (3.13). □

4.4. Proof of theorem 3.3

The proof of theorem 3.3 follows the approach of theorem 3.2, in which the local coherence
of the sensing basis (Fourier) with respect to the sparsity basis (Haar wavelet) plays a major
role.

Definition 4.1 (local coherence [36]). The local coherence of an orthonormal basis Φ =
{ϕj}Nj=1 of CN with respect to the orthonormal basis Ψ = {ψk}Nk=1 of CN is the function
µloc(Φ,Ψ) ∈ RN defined coordinate-wise by

µloc
j (Φ,Ψ) = sup

1⩽k⩽N
|〈ϕj,ψk〉|, j = 1,2, . . . ,N.

The following result indicates that, with high probabilities, signals can be stably reconstruc-
ted from subsampled measurements with the local coherence function appropriately used. It
can be deemed as a finite-dimensional analog to [53, theorem 2.1], and a proof can be found
in [36].

Lemma 4.3. LetΦ = {ϕj}Nj=1 andΨ = {ψk}Nk=1 be two orthonormal bases ofCN. Assume the
local coherence of Φ with respect to Ψ is point-wise bounded by the function κ in the sense of

sup
1⩽k⩽N

|〈ϕj,ψk〉|⩽ κj.

Fix δ > 0 and integers N, m, and s such that s≳ log(N) and m≳ δ−2‖κ‖22s log
3(s) log(N),

and choose m (possibly not distinct) indices j ∈ Ω⊂ {1,2, . . . ,N} i.i.d. from the probability
measure ν on {1,2, . . . ,N} given by v( j) = κ2

j /‖κ‖22.
Consider the matrix A ∈ Cm×N with entries Aj,k = 〈ϕj,ψk〉, j ∈ Ω, k ∈ {1,2, . . . ,N}, and

consider the diagonal matrix G= diag(g) ∈ Cm×m with gj = ‖κ‖2/κj, j = 1, . . . ,m. Then with

probability at least 1−N−c log3(s), the RIC δs of the preconditioned matrix 1√
mGA satisfies

δs ⩽ δ.
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In particular, the following result describes the local coherence of the orthonormal Fourier
basis with respect to the orthonormal Haar wavelet basis, which was initially occurred in [36].

Lemma 4.4 (theorem 4 in [36], slightly modified). Let N= 2n be a power of 2, where n ∈
N+. The local coherence µloc of the orthonormal two-dimensional Fourier basis {φk1,k2} with
respect to the orthonormal bivariate Haar wavelet basis {hℓj,k} in CN×N is bounded by

µloc
k1,k2 ⩽ κ(k1,k2) :=min

(
1,

18π
max(|k1|, |k2|)

)
κ′(k1,k2) :=min

(
1,

18π
√
2

(|k1|2 + |k2|2)1/2

)
,

and one has ‖κ‖2 ⩽ ‖κ ′‖2 ⩽
√

17200+ 502log(N).

Remark 4.1. For theorem 4 in [36], n⩾ 8 was assumed to ensure 17200+ 502log(N)⩽
2700log(N) and hence ‖κ‖2 ⩽ ‖κ ′‖2 ⩽ 52

√
log(N). We regard the assumption as a restric-

tion on the size N×N of images, thus we remove this assumption and adopt the bound√
17200+ 502logN in our following proof. Besides, it was conjectured in [36] that the factor

2700 is due to lack of smoothness for the Haar wavelets, and this factor might be removed by
considering smoother wavelets.

Proof of theorem 3.3. LetP ∈ Cm×m be the diagonal matrix encoding the weights in the noise
model. That is, P= diag(ρ), where, for κ ′ as in lemma 4.4, ρ ∈ Cm is a vector converted from
the matrix

ρ(k1,k2) =
‖κ′‖2

κ′(k1,k2)
= C

√
1+ log(N)max

(
1,

(|k1|2 + |k2|2)1/2

18π

)
, (k1,k2) ∈ Ω.

Note thatPg= ρ ◦ g for g ∈ Cm. Together with the particular incoherence estimate in lemma
4.4, lemma 4.3 implies that with probability at least 1−N−2c log3(s) (as c is a generic constant,
the factor 2 of c is removed in the statement of theorem 3.3), A := 1√

mPFΩH∗ has the RIP of

order s and level δ < 0.6 once s≳ log(N2)≳ log(N) and

m≳ sδ−2 log3(s) log2(N2)≳ sδ−2 log3(s) log2(N).

By the assumption m≳ s log3(s) log5(N) (in fact, we shall assume m≳ sδ−2 log3(s) log5(N)),
we can assume that A has the RIP of order s̄= Cs log3(N) and level δ < 0.6, where C is the
constant derived in theorem 3.2. Moreover, let V= Xopt − X̄ and apply proposition 3.1 again
to c=HV, where c(1) := c(1)(V) denotes the Haar coefficient corresponding to the constant
wavelet, and c( j) := c( j)(V) (j⩾ 2) denotes the ( j− 1)st largest-magnitude Haar coefficient
among the remaining. To apply proposition 3.1, we need to find cone and tube constraints for
c=HV.

• Cone constraint on c=HV, which is the same as (4.8) in the proof of theorem 3.2.
• Tube constraint ‖Ac‖2 = ‖AHV‖2 ⩽

√
2τ , since

m‖AHV‖22 = ‖PFΩH∗HV‖22 = ‖ρ ◦ (FΩV)‖22
⩽ ‖ρ ◦ (FΩX

opt − b)‖22 + ‖ρ ◦ (FΩX̄− b)‖22 ⩽ 2mτ 2.

The rest is similar to the proof of theorem 3.2, and the only trivial difference is the tube con-
straint, where 2τ there is replaced by

√
2τ here. Hence, we omit the following steps, and the

estimation for the setting in this theorem, with constants removed, is the same as (3.13).
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Figure 4. Test images.

5. Numerical experiments

We now report some experimental results to validate the effectiveness and numerical solvabil-
ity of the enhanced TVmodel (1.7). As previously mentioned, the model (1.7) is of difference-
of-convex, and it can be solved by somewell-developed algorithms in the literature.We include
the details of an algorithm in appendix C. For comparison, we consider the TV model (1.2)
and the TVa−TVi model in [39]. In our experiments, the TV model (1.2) is solved by the
split Bregman method studied in [32], and the TVa−TVi model is solved by the difference-
of-convex functions algorithm (DCA) with subproblems solved by the split Bregman method
in [39]. Details of the tuned parameters of these algorithms are stated in appendix C.

As displayed in figure 4, we test the standard Shepp–Logan phantom, three more synthetic
piecewise-constant images (Shape, Circle, and USC Mosaic), two natural images (Pepper
and Clock), and two medical images (Spine and Brain). Two sampling strategies are con-
sidered in our experiments. The first one is the radial lines sampling, and the other one is
the strategy (3.15) proposed in theorem 3.3, which is referred to as theMRI-desired sampling
strategy below. All codes were written by MATLAB R2021b, and all numerical experiments
were conducted on a laptop (16 GB RAM, Intel CoreTM i7-9750H Processor) with macOS
Monterey 12.1.

Example #1: Shepp–Logan phantom. The Shepp–Logan phantom is a standard image
in the field of image reconstruction. Our experiments for this image are organized into three
parts. The first part concentrates on the reconstruction of the Shepp–Logan phantom of size
256× 256 from noise-freemeasurements, andα is fixed as 0.8 in the enhanced TVmodel (1.7).
We sample along 15, 8, and 7 radial lines, corresponding to sampling rates 6.44%, 3.98%, and
3.03%, respectively. We also take MRI-desired measurements with rates 2.29%, 1.91%, and
1.53%. As shown in figure 5, the enhanced TV model (1.7) produces accurate reconstruc-
tion in all six sampling settings, and reconstruction quality is much better than those in com-
parison when the amount of samples is limited (e.g. 7 radial lines and 1.53% MRI-desired
measurements). This observation confirms the result presented in section 3.3, which state that
the reconstruction error bound (3.18) for the enhanced TV model (1.7) is tighter than (1.10)
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Figure 5. Shepp–Logan phantom: comparison of three models with radial line-sampled
and MRI-desired measurements.

for the TV model (1.7) with a limited amount of noise-free measurements. As mentioned in
section 3.3, such a result also pertains to the comparison between the enhanced TVmodel (1.7)
and the TVa−TVi model in [39].

Table 1 presents the relative errors in the Frobenius sense and the structural similarity index
measure (SSIM) values in the format of ‘relative error (SSIM value)’ for comparison, in which
the least error in each setting is printed in bold. The advantages of the enhanced TVmodel (1.7)
become apparent when the available measurements are limited (e.g. when the sampling rate
is below 3.03%). However, when measurements are relatively sufficient, as in the cases of 15
lines and 8 lines, the enhanced TV model (1.7) does not produce the least error reconstruc-
tion. Notably, though the outperformance of the enhanced TV model (1.7) is not sustained
as measurements become sufficient, the difference of three models is too tiny to be visually
observed. Furthermore, it is worth noting that the SSIM values are 1.0000 for the enhanced
TV model (1.7) in all six sampling settings, indicating that this model’s stability with respect
to the number of measurements is well illustrated for the Shepp–Logan phantom image. We
also report the performance of the enhanced isotropic TV model (labeled as ‘Enhanced TV-
isotropic’ in table 1), using the algorithm described in appendix C. However, we observe that
the enhanced isotropic TV model does not perform better than the enhanced anisotropic TV
model (1.7), and it even fails for the case of 7 lines, reporting 8.794× 1013 (0.0000) and imply-
ing that α= 0.8 is severely large for it. If α= 0.6 for the enhanced isotropic TV model, then
0.3970 (0.6288) is reported for the case of 7 lines. This observation can be partially explained
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Table 1. Relative errors and SSIM values of the reconstructed images in figure 5 and
images reconstructed using the enhanced isotropic TV regularization.

TV TVa−TVi Enhanced TV
Enhanced
TV-isotropic

15 lines (6.44%) 1.924× 10−13

(1.0000)
7.845× 10−14

(1.0000)
2.977× 10−12

(1.0000)
1.212× 10−7

(1.0000)
8 lines (3.98%) 0.2456 (0.6764) 3.852× 10−9

(1.0000)
7.841× 10−7

(1.0000)
1.233× 10−3

(1.0000)
7 lines (3.03%) 0.4819 (0.4612) 0.3968 (0.5209) 1.608× 10−6

(1.0000)
/

MRI-desired
(2.29%)

0.0415 (0.9890) 0.0266 (0.9896) 8.069× 10−6

(1.0000)
8.069× 10−3

(0.9994)
MRI-desired
(1.91%)

0.1575 (0.8937) 0.1837 (0.8404) 2.324× 10−5

(1.0000)
1.017× 10−2

(0.9990)
MRI-desired
(1.53%)

0.2826 (0.7473) 0.2983 (0.7374) 8.456× 10−5

(1.0000)
1.584× 10−2

(0.9978)

Table 2. Relative errors and SSIM values of the reconstructed images in figure 5, with
three levels of noise std = 0.04, 0.06, and 0.08.

TV TVa−TVi Enhanced TV

15 lines (6.44%), std = 0.04 0.1796 (0.5759) 0.1860 (0.4534) 0.0921 (0.9531)
15 lines (6.44%), std = 0.06 0.2506 (0.4866) 0.2748 (0.3161) 0.1038 (0.9490)
15 lines (6.44%), std = 0.08 0.3111 (0.4265) 0.3535 (0.2448) 0.1496 (0.9359)
MRI-desired (6.50%), std = 0.04 0.1041 (0.7322) 0.1376 (0.5721) 0.0873 (0.9588)
MRI-desired (6.50%), std = 0.06 0.1498 (0.6101) 0.2082 (0.4179) 0.1393 (0.9477)
MRI-desired (6.50%), std = 0.08 0.1914 (0.5213) 0.2764 (0.3243) 0.1674 (0.9396)

by our discussion in section 1.2 and partially explained by the fact that the value of isotropic
TV is less than that of anisotropic TV. In the following experiments, we investigate only the
enhanced anisotropic TV model (1.7).

The second part illustrates the robustness of the enhanced TV model (1.7) with respect
to noise. In this case, we still set α to 0.8 in the model (1.7), and we take measurements
along 15 lines (corresponding to a 6.44% sampling rate) and use 6.5% MRI-desired samples.
The Fourier measurements are perturbed by Gaussian noise with standard derivations (‘std’
for short) of 0.04, 0.06, and 0.08, respectively. The contamination process is implemen-
ted in MATLAB commands: For any image X with size N×N, we first compute its Four-
ier measurements by the fast Fourier transform, i.e. F = fft2(X)/N. Then we perturb F
by F = F+1/sqrt(2)∗(std∗randn(size(F))+std∗1i∗randn(size(F))). The relat-
ive errors and SSIM values listed in table 2 show that the enhanced TV model (1.7) is the
most robust one. In particular, in terms of SSIM values, the enhanced TV model (1.7) pro-
duces much better reconstruction quality, and the superiority is more apparent when the level
of noise increases. These results assert the theoretical result in section 3.3 that the enhanced
TV model (1.7) has a tighter reconstruction error bound than the TV model (1.2) and the
TVa−TVi model in [39] when the level of noise is relatively large.
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Figure 6. Phase transitions with respect to m and α.

The third part focuses on the phase transition of reconstruction success rates. A reconstruc-
tion is considered successful if the relative error of the reconstructed image is less than 10−3.
We consider the Shepp–Logan phantom with size 64× 64 in this part. We choose α among
{0.7,0.8, . . . ,2.7} for the enhanced TV model (1.7). We choose the number of measurements
m from 3 to 12 radial lines for radial sampling and among {100,140,180, . . . ,900} for MRI-
desired sampling. For each case, we test five times and report the success rate. According to
theorem 3.3, stable reconstruction can be achieved if samples are enough in the sense of (3.7)
and the model parameter α is bounded in the sense of (3.16). The results in figure 6 assert
that a successful reconstruction via the enhanced TV model (1.7) requires relatively sufficient
samples and a reasonably bounded parameter α, thus validating results in theorem 3.3.

Example #2: Synthetic images. Example #1 shows the superiority of the enhanced TV
model (1.7) for Shepp–Logan phantom with limited samples. The purpose of this study is to
further assert this superiority. We consider the radial line sampling and validate this superiority
by testing three synthetic images: Shape, Circle, and USC Mosaic. We also fix α= 0.8 in the
enhanced TV model (1.7). When the number of measurements is limited enough, all three
models fails to generate good reconstructions. Bearing in mind that the criteria of the limitation
on the amount of measurements are different for three models, we now show some cases that
the reconstruction via the enhanced TVmodel (1.7) is particularly good while those via the TV
model (1.2) and the TVa−TVi model in [39] may fail. The reconstruction results are displayed
in figure 7, and the relative errors and SSIM values are reported in table 3. From both figure 7
and table 3, the reconstruction of the enhanced TV model (1.7) is significantly better than the
other two models.

We also take this example to test how the inner iterations can affect the overall performance
of the algorithms under comparison. The algorithm presented in appendix C adopts DCA as
the outer iteration and uses the alternating direction method of multiplier (ADMM) to solve
each DCA subproblem. When the maximum number of inner ADMM iterations is increased
from 1000 to 2000, the numerical results are reported in the fifth column of figure 7, labeled
as ‘Enhanced TV-2000’. We see that even if the enhanced TV model (1.7) with at most 1000
inner iterations is good enough to generate a satisfactory reconstruction, e.g. for Circle and
USC Mosaic, increasing the number of inner iterations can further reduce the relative errors
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Figure 7. Shape, Circle, and USC Mosaic: comparison of three models with limited
measurements.

Table 3. Relative errors and SSIM values of the reconstructed images in figure 7.

TV TVa−TVi Enhanced TV
Enhanced
TV-2000

Shape (1.29%) 0.3094 (0.5466) 0.2503 (0.5458) 0.0266 (0.9932) 0.0261 (0.9937)
Circle (3.86%) 0.0394 (0.9705) 0.0498 (0.9430) 7.411× 10−8

(1.0000)
6.815× 10−13

(1.0000)
USC Mosaic
(1.95%)

0.0405 (0.9032) 0.0439 (0.9024) 8.013× 10−5

(1.0000)
4.206× 10−7

(1.0000)

by up to several orders of magnitude. This observation provides a simple recipe for higher-
accuracy reconstruction.

Example #3: Natural images. We further validate the superiority of the enhanced TV
model (1.7) by testing it on two natural images: Peppers and Clock. We set α to 1 in the
enhanced TV model (1.7) for both images and display the reconstruction results from 9.16%
MRI-desired samples in figure 8. We also report the relative errors in the Frobenius sense and
SSIM values for each reconstruction fromMRI-desired samples of rates 9.16%, 13.7%, 18.3%,
and 22.9% in table 4.

However, it is worth noting that the enhanced TV model (1.7) may not perform as effect-
ively for natural images as it does for the images in Examples #1 and #2 due to the more
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Figure 8. Peppers and Clock: comparison of three models with the MRI-desired
sampling. SSIM values are also reported in the titles of each reconstruction.

Table 4. Relative errors and SSIM values of reconstructions of two natural images with
various sampling rates.

TV TVa−TVi Enhanced TV

Peppers (9.16%) 0.0771 (0.8327) 0.0823 (0.7748) 0.0718 (0.8435)
Peppers (13.73%) 0.0597 (0.8793) 0.0624 (0.8409) 0.0536 (0.8908)
Peppers (18.31%) 0.0447 (0.9139) 0.0498 (0.8800) 0.0414 (0.9208)
Peppers (22.89%) 0.0388 (0.9292) 0.0424 (0.9035) 0.0351 (0.9358)
Clock (9.16%) 0.0404 (0.9010) 0.0440 (0.8297) 0.0379 (0.9124)
Clock (13.73%) 0.0288 (0.9356) 0.0319 (0.8884) 0.0272 (0.9421)
Clock (18.31%) 0.0213 (0.9563) 0.0246 (0.9218) 0.0203 (0.9592)
Clock (22.89%) 0.0182 (0.9647) 0.0205 (0.9393) 0.0169 (0.9674)

complicated (non-piecewise-constant) edges in natural images. Nonetheless, this observation
is not surprising as the enhanced TV model (1.7) is a generalization of the TV model (1.2),
which performs better for piecewise-constant images than natural images. The enhanced TV
model (1.7) retains the main feature of the TV regularization while also reduces the loss of
contrast.

Example #4: Medical images. Finally, we apply the enhanced TV model (1.7) to two
medical images: Spine and Brain. We again set α to 1 and use 15.3%MRI-desired samples for
the reconstruction of Spine and 9.16% for Brain. The reconstructed images are displayed in
figure 9, and it is evident that that the enhanced TVmodel (1.7) produces better reconstructions
compared to the other models. We also test more sampling rates and report the SSIM values
of reconstructions with each rate in figure 10. We observe that the superiority of the enhanced
TV model (1.7) is more apparent when the sampling rate is relatively low. Therefore, the
enhanced TV model (1.7) is preferred when measurements are limited. Similar to Example
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Figure 9. Spine and Brain: comparison of three models on medical images with the
MRI-desired sampling. SSIMvalues are also reported in the titles of each reconstruction.

Figure 10. Spine andBrain: SSIMvalues of reconstructionswith various sampling rates.

#3, the enhanced TV model (1.7) performs less effectively for Example #4 than Examples #1
and #2 due to the non-piecewise-constant edges of these medical images.

6. Conclusions

We focused on enhancing the canonical constrained TV minimization model for image recon-
struction by the spingback regularization in our previous work [4]. The enhanced TV model
improves the original TV model by adding a backward diffusion process to further reduce
the loss of contrast. The reconstruction guarantees of the enhanced TV model (1.7) for non-
adaptive subsampled linear RIP and variable-density subsampled Fourier measurements were
theoretically established. For non-adaptive linear RIP measurements, the RIP level δ require-
ment was relaxed from δ < 1/3 (which was derived for the TV model (1.2) in [47]) to
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δ < 0.6. The reconstruction error bounds estimated in theorems 3.1 and 3.2 also imply reas-
onable reconstruction error estimations for the TV model (1.2) when δ→ 0.6. In contrast, the
bounds derived in [47] for the TV model (1.2) tend to be infinity as δ→ 0.6. For variable-
density sampled Fourier measurements, the required minimum number of measurements of
the enhanced TV model (1.7) was shown to be around 30.86% of that established in [36] for
the TV model (1.2). This improvement is due to the relaxation of the requirement on δ.

It is worth noting that we only consider the anisotropic TV, and proofs of the main theor-
etical results can be easily extended to the isotropic TV case. In addition, our results can also
be generalized in several other ways. For example, one can consider other sampling strategies,
such as those in [1, 51], for Fourier samples as considered in theorem 3.3. For the guarantees
analysis with Fourier measurements, noise is measured by the weighted ℓ2-norm (see (3.17)).
One can consider some other norms to measure noise, such as those in [1, 51]. Our theoret-
ical results for two-dimensional images can also be extended to higher dimensional signals, as
considered in [1, 46]. Furthermore, it seems promising to apply the enhanced TV model (1.7)
to other problems such as image in painting and super-resolution problems, combining the
enhanced TV regularization (1.6) with other data fidelity terms to model some problems such
as image segmentation and motion estimation, and using the enhanced TV regularization (1.6)
in combination with other widely-used convex and/or non-convex regularizers to model vari-
ous more challenging image processing problems.
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Appendix A. The enhanced TV model (1.7) in a continuum setting

Let u : Ω→ R be an image, where the image domain Ω is a bounded and open subset of R2.
The TV denoising model in [55] for a noisy image u0 : Ω→ R is formulated as

min
u

ETV(u) :=
ˆ
Ω

|∇u|dx+ µ

2

ˆ
Ω

(u(x)− u0(x))
2dx, (A.1)

where x= (x1,x2) ∈ Ω, |∇u|=
√
(∂x1u)2 +(∂x2u)2, and µ> 0 balances the TV term and the

data fidelity term. Note that the isotropic TV proposed in [55] is used in the model (A.1).
Though the anisotropic TV defined in [24] is used in the enhanced TV regularization (1.6), the
main purpose of this appendix is to explain how the TV is enhanced in the sense of (1.6). Thus,
we adopt the model (A.1) for simplicity.We refer the reader to [44] for the anisotropic TV flow.
More specifically, the enhanced (isotropic) TV denoising model in a continuum setting can be
written as

min
u

EETV(u) :=
ˆ
Ω

|∇u|dx− α

2

ˆ
Ω

|∇u|2dx+ µ

2

ˆ
Ω

(u(x)− u0(x))
2dx. (A.2)
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Then, by computing the first-order variation of the functional, the E–L equation associated
with the energy functional EETV(u) in the distributional sense is

0=−∇ ·
[
∇u
|∇u|

]
+α∆u+µ(u− u0) with

∂u
∂n

∣∣∣∣
∂Ω

= 0, (A.3)

where n denotes the outer normal derivative along the boundary ∂Ω of Ω.
Alternatively, as [55], we could use the gradient descent marching with artificial time t.

That is, the solution procedure of the E–L equation (A.3) uses a parabolic equation with time
t as an evolution parameter. This means, for u : Ω× [0,T]→ R, we solve

ut =−∂EETV

∂u
=∇·

[
∇u
|∇u|

]
−α∆u−µ(u− u0) for t> 0, x ∈ Ω, (A.4)

with a given initial condition u(x,0) and the boundary condition ∂u
∂n |∂Ω = 0. Note that there

is a backward diffusion term −α∆u in the evolution equation (A.4). Thus, as t increases, we
approach a denoised and deblurred version of the image if the blur is assumed to follow such
a diffusion process.

If the energy functional EETV(u) has a minimum, then the minimizer must satisfy the E–L
equation (A.4). Certainly, the existence of the minimizer of EETV is unknown for an arbitrary

α. On the other hand, with α < µ infx∈Ω
|u(x)|2
|∇u(x)|2 , the Lagrangian

LETV(∇u,u,x) := |∇u| − α

2
|∇u|2 + µ

2
(u(x)− u0(x))

2

is bounded below by |∇u(x)|+ µ−α
2 |u(x)|2 −µu(x)u0(x)+ |u0(x)|2, which is a convex func-

tion with respect to variables ∇u and u. Hence, EETV is bounded below, and any stationary
point u∗ of EETV (including global and local minimizers) must be finite and satisfy the cor-
responding EL equation (A.4) involving the backward diffusion term. This requirement on α
explains the rationale of the assumption on the upper bound of α in theorems 3.1–3.3 (e.g.

α⩽
√

48s log(N)
K2∥∇Xopt∥2

in theorems 3.2 and 3.3).

Appendix B. Implementation details for reproducing figure 1

For denoising, let the noisy image be y= X̄+ e ∈ CN×N. The denoising model using the
enhanced TV regularization (1.6) is formulated as

min
X∈CN×N

‖∇X‖1 −
α

2
‖∇X‖22 +

µ

2
‖y−X‖22, (B.1)

where µ> 0 is a parameter balancing the enhanced TV regularization term and the data fidelity
term. Note that the model (B.1) is the discretization of the model (A.2). The model (B.1)
can be solved by the DCA in [59, 60], and its subproblems can be solved by the splitting
Bregman iteration in [32]. We summarize the resulting algorithm as algorithm 1 below, in
which MaxDCA denotes the maximum number of the DCA iterations and MaxBreg denotes
is the maximum number of the Bregman iterations.
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Algorithm 1. Solving the unconstrained denoising model (B.1).

Input: Define X0 = 0, z= 0, k= 0, dx = dy = 0, MaxDCA and MaxBreg
1 while k<MaxDCA do
2 bx = by = 0, p= 0;
3 while p<MaxBreg do

4 u=
(
µ+β∇T∇

)−1 (
µy+βDT

x (dx− bx)+βDT
y (dy− by)

)
;

5 dx = shrink
(
Dxu+ bx+αDxXk/β,1/β

)
;

6 dy = shrink
(
Dyu+ by+αDyXk/β,1/β

)
;

7 bx = bx+Dxu− dx;
8 by = by+Dyu− dy;
9 p← p+ 1;
10 end
11 Xk = u;
12 k← k+ 1;
13 end

To reproduce figure 1, we test the noisy Strip image (displayed in figure 1) with size 128×
128. The parameters for algorithm 1 are set as α= 1.2, µ= 0.8, β= 1, MaxDCA = 10, and
MaxBreg = 1000. We contaminate the test image by adding random values onto each pixel
from a normal distribution with mean 0 and standard deviation 0.6, without normalizing all
pixel intensities such that they are in the range of [0,1]. We adopt the same parameters for the
splitting Bregman iteration for solving the TV denoising model except that the number of the
splitting Bregman iterations is set as 10 000.

Appendix C. DCA for the enhanced TV model (1.7)

We apply the mentioned DCA in [59, 60] to solve the enhanced TV model (1.7). We denote
by DxX and DyX the horizontal and vertical components of ∇X, respectively, where Dx and
Dy can be deemed as two operators. The DCA replaces the second component α

2 ‖∇X‖
2
2 of

the enhanced TV regularization term (1.6) by a linear majorant
〈
X−Xk, ξk

〉
, where ξk ∈

∂
(
α
2 ‖∇X‖

2
2

)
= {α∇T∇Xk}, and then solves the resulting convex optimization problem to

generate the iterate Xk+1. Ignoring the constant term 〈Xk, ξk〉 in the objective function, the
iterative scheme of the DCA reads as

Xk+1 ∈arg min
X∈CN×N

{
‖DxX‖1 + ‖DyX‖1 −α〈DxX,DxX

k〉−α〈DyX,DyX
k〉

s.t. ‖MX− y‖2 ⩽ τ} .
(C.1)

Convergence of the DCA (C.1) can be found in, e.g. [4, 59, 60]. Recall that a convex function
F : Rd → R is said to be ρ-strongly convex if F(x)− ρ

2 ‖x‖
2
2 is convex on Rd. A simple but

critical fact ensuring the convergence is that the component α
2 ‖∇X‖

2
2 is strongly convex either

if X is mean-zero or if X contains zero-valued pixels (cf the classical Sobolev inequality (4.5)
and equation (4.7)).

To solve (C.1), we suggest using the benchmark ADMMs in [31]. Clearly, Xk+1 is also a
solution to the reformulated problem

min ‖dx‖1 + ‖dy‖1 −α〈dx,DxX
k〉−α〈dy,DyX

k〉,
s.t. MX− y− z= 0,

z ∈ B(0, τ) := {x ∈ Rm : ‖x‖2 ⩽ τ},
DxX= dx, DyX= dy.

(C.2)
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Introducing three Lagrange multipliers λ, bx, and by, we write the augmented Lagrangian func-
tion of (C.2) as

Lβ,µ(X,dx,dy,z,bx,by,λ) := ‖dx‖1 + ‖dy‖1 −α〈dx,DxX
k〉−α〈dy,DyX

k〉

+
µ

2
‖z− (MX− y)−λ‖22 +

β

2
‖dx−DxX− bx‖22

+
β

2
‖dy−DyX− by‖22,

where µ,β > 0 are penalty parameters. Implementations of the ADMM to (C.1) are included
as algorithm 1 below, in whichMaxDCA denotes the maximum number of the DCA iterations,
MaxADMM is the maximum number of the ADMM iterations for (C.2) with a given Xk, and
‘tol’ is the tolerance for the DCA iterations. If the TV term ‖X‖TVa = ‖∇X‖1 is replaced by
the isotropic version, then DxX and DxX in (C.1) or dx and dy in (C.2) do not decouple while
we can still update dx and dy in a closed-form manner. Like the extension from the anisotropic
TV to the isotropic one in [32], to solve the enhanced isotropic TV model, we merely need to
replace lines 5 and 6 in algorithm 2 with

• s=
√

|Dxu+ bx+αDxXk/β|.2 + |Dyu+ by+αDyXk/β|.2;
• dx =max(s− 1/β,0). ∗ (Dxu+ bx+αDxXk/β)./s;
• dy =max(s− 1/β,0). ∗ (Dyu+ by+αDyXk/β)./s;

where the point ‘.’ before operations denotes entry-wise operations.

Algorithm 2. DCA for the enhanced TV model (1.7).

Input: Define X0 = 0, z= 0, k= 0, dx = dy = 0, MaxDCA, MaxADMM, and tol
1 while k<MaxDCA and ∥Xk−Xk−1∥2 > tol do
2 bx = by = 0, p= 0;
3 while p<MaxADMM do

4 u=
(
µM∗M+β∇T∇

)−1 (
µM∗(y− z−λ)+βDT

x (dx− bx)+βDT
y (dy− by)

)
;

5 dx = shrink
(
Dxu+ bx+αDxXk/β,1/β

)
;

6 dy = shrink
(
Dyu+ by+αDyXk/β,1/β

)
;

7 z= PB(0,τ)(Mu− y+λ);
8 bx = bx+Dxu− dx;
9 by = by+Dyu− dy;
10 λ= λ+(Mu− y)− z;
11 p← p+ 1;
12 end
13 Xk = u;
14 k← k+ 1;
15 end

In our numerical experiments, to implement algorithm 2, we set µ= 103, β= 10, MaxDCA
= 15, tol= 10−10 (for noise-free measurements) or 10−3 (for noisy measurements), and Max-
ADMM = 1000. For the TVa−TVi model in [39], we use the same penalty parameters and
stopping criterion for running the DCA; and for the split Bregman method in solving the DCA
subproblem, we set the maximum numbers of outer and inner iterations as 50 and 20, respect-
ively. The parameters for Bregman iterations were suggested in [39], and they coincide with
the maximum number of the inner ADMM iterations in algorithm 2, as 50× 20= 1000. For
the TV model (1.2), we adopt the same penalty parameters and tolerance for outer iterations.
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We set the maximal numbers of outer and inner iterations to be 50 and 200, respectively; both
numbers were suggested in [39].
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