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Abstract

Singular and oscillatory functions play a crucial role in various applications, and their approximation
s crucial for solving applied mathematics problems efficiently. Hyperinterpolation is a discrete projection

ethod approximating functions with the L2 orthogonal projection coefficients obtained by numerical
ntegration. However, this approach may be inefficient for approximating singular and oscillatory
unctions, requiring a large number of integration points to achieve satisfactory accuracy. To address
his issue, we propose a new approximation scheme in this paper, called efficient hyperinterpolation,
hich leverages the product-integration methods to attain the desired accuracy with fewer numerical

ntegration points than the original scheme. We provide theorems that explain the superiority of efficient
yperinterpolation over the original scheme in approximating such functions belonging to L1, L2, and
ontinuous function spaces, respectively, and demonstrate through numerical experiments on the interval
nd the sphere that our approach outperforms the original method in terms of accuracy when using a
imited number of integration points.
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1. Introduction

Let Ω be a bounded region of Rs , either the closure of a connected open domain or a smooth
losed lower-dimensional manifold in Rs . The region is assumed to have finite measure with
espect to a given measure dω, that is,

∫
Ω dω = V < ∞.

We are attracted by the efficient numerical approximation of functions in the form of

F(x) = K (x) f (x) (1)

by some polynomials on Ω , where K ∈ L1(Ω ) is a real- or complex-valued absolutely
ntegrable function, which needs not be continuous or of one sign, and f ∈ C(Ω ) is a
ontinuous (and preferably smooth) function. By efficient, we mean that a considerably small
mount of sampling points is enough for such approximation with satisfactory accuracy. We
lso investigate scenarios of K ∈ L2(Ω ) and C(Ω ) to refine the general (but rough) analysis for
he case of K ∈ L1(Ω ). We have to remark that in this paper, we are interested in presenting
unified quadrature-based approach to approximating such functions over general regions, not
erely on the one-dimensional case.

.1. Sources of functions in the form F = K f

Functions in the form of (1) frequently feature in mathematical physics and applied
athematics [10,19]. Some differential equations naturally have solutions with oscillatory

ehaviors and singularities. For example, the fundamental solutions of the Helmholtz equation
re given by

G(x, y) =

⎧⎪⎪⎨⎪⎪⎩
i
4

H (1)
0 (κ|x − y|) for x, y ∈ R2,

1
4π

eiκ|x−y|

|x − y|
for x, y ∈ R3,

here |x − y| denotes the usual Euclidean distance between x and y, H (1)
0 (z) is the Hankel

unction of the first kind and of order zero, and κ is known as the wave number when the
quation is applied to waves. The fundamental solution of the biharmonic differential equation
n R2 is given by

G(x, y) =
1

8π
|x − y|

2 log |x − y| for x, y ∈ R2.

Another important source of singular and oscillatory functions arises in the study of the
lectromagnetic field and wave computation, where the expression

Yℓ,k(y)
|x − y|

for x, y ∈ S2

s encountered [6,9,19]. Here S2
:= {(x, y, z) ∈ R3

: x2
+ y2

+ z2
= 1} and Yℓ,k represents the

pherical harmonic of degree ℓ and order k. In this context, the term 1/|x − y| gives rise to a
ingularity, while the spherical harmonic Yℓ,k(y) can be considered a continuous function when
he degree ℓ is small. However, as the degree ℓ increases, Yℓ,k(y) becomes more oscillatory,
osing a considerably challenging approximation problem involving a mixture of singular and
scillatory functions.

As we can see, many fundamental solutions are functions with singularities and oscillatory
ehaviors. The approximation of such functions helps us develop approximation methods to
olve related mathematical physics problems. Thus, designing an efficient method for such
pproximation is a fascinating area of computational mathematics.
2
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1.2. The approximation basics

Let the space L p(Ω ) be equipped with the usual L p norm ∥ · ∥p for 1 ≤ p ≤ ∞, that is,
for g ∈ L p(Ω ),

∥g∥p :=

{(∫
Ω |g|

pdω
)1/p

, 1 ≤ p < ∞,

ess supx∈Ω |g(x)|, p = ∞.

The space C(Ω ) of continuous functions is also equipped with the L∞ norm. In particular,
L p(Ω ) is a Hilbert space when p = 2, with the L2 inner product defined as

⟨v, z⟩ =

∫
Ω

vz̄dω.

This inner product also induces the L2 norm, that is, ∥g∥2 =
√

⟨g, g⟩ for g ∈ L2(Ω ).
Let Pn be the linear space of polynomials on Ω of degree at most n, equipped with the L2

nner product, and let {p1, p2, . . . , pdn } ⊂ Pn be an orthonormal basis of Pn in the sense of
pℓ, pℓ′⟩ = δℓℓ′ for 1 ≤ ℓ, ℓ′

≤ dn , where dn = dimPn . A typical constructive approximation
cheme of degree n for F = K f consists of two stages: evaluating the integrals∫

Ω

(K f )pℓdω, ℓ = 1, 2, . . . , dn, (2)

nd then approximating F by

Pn F :=

dn∑
ℓ=1

(∫
Ω

(K f )pℓdω

)
pℓ. (3)

his scheme (3) is the famous L2 orthogonal projection of F onto Pn . To link the orthogonal
projection to applications immediately, a discrete approximation of the scheme (3), now
known as hyperinterpolation, was introduced by Sloan in 1995 [37]. Let ⟨·, ·⟩m be an m-point
quadrature rule of the form

m∑
j=1

w j g(x j ) ≈

∫
Ω

gdω, (4)

where the quadrature points x j ∈ Ω and weights w j > 0 for j = 1, 2, . . . , m. With the
assumption that the quadrature rule (4) has exactness degree 2n, i.e.,

m∑
j=1

w j g(x j ) =

∫
Ω

gdω ∀g ∈ P2n,

he hyperinterpolant of degree n, constructed for the approximation of F ∈ C(Ω ), is defined as

Ln F :=

dn∑
ℓ=1

⟨K f, pℓ⟩m pℓ. (5)

e refer the reader to [19,21,25,35,38,43,44,50] for some follow-up works on the general anal-
sis of hyperinterpolation and [3,26,34,45] for some variants of classical hyperinterpolation.
he approximation of the form (5) using rotationally invariant quadrature rules on the 2-sphere
2 was also investigated in [1].

However, it is well known that if K is singular and highly oscillatory, it is inefficient to
valuate the integrals (2) directly using some classical numerical integration rules. Instead,
3
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one shall evaluate them in a semi-analytical way: for the evaluation of an integral of the form∫
Ω K (x) f (x)dω(x), one shall replace f by its polynomial interpolant or approximant of degree
, expressed as

∑dn
ℓ=1 cℓ pℓ, and evaluate the integral by∫

Ω

K (x) f (x)dω(x) ≈

dn∑
ℓ=1

cℓ

∫
Ω

K (x)pℓ(x)dω(x).

his idea for numerical integration may be referred to as the product-integration rule in the
lassical literature [40–42]. This rule was initially designed on [−1, 1] for K ∈ L1[−1, 1]
nd f ∈ C[−1, 1], and it converges to the exact integral as the number of quadrature points
pproaches the infinity if K ∈ L p[−1, 1] for some p > 1 is additionally assumed. In the
ontext of highly oscillatory integrals with an oscillatory K ∈ C(Ω ), this approach is also
nown as the Filon-type method [17,22]. In most of these references, f is approximated by its
nterpolant, and it is generally assumed that the modified moments∫

Ω

K (x)pℓ(x)dω(x), ℓ = 1, 2, . . . , dn (6)

an be computed analytically by using special functions or efficiently by invoking some stable
terative procedures. By “efficiently” we mean that the implementation of these procedures

ay incorporate with the fast Fourier transform (FFT) with reduced complexity, see, for
xample, [14]. Besides, f may also be replaced by its approximant. For example, the idea of
eplacing f with its hyperinterpolant has emerged in the first paper [37] on hyperinterpolation.
t may be better to replace f with its hyperinterpolant rather than the interpolant: The L2

perator norm of hyperinterpolation is bounded if the regional area/volume V is finite [37], but
here is no guarantee of the boundedness of the L2 operator norm of polynomial interpolation
ver general regions; see a piece of evidence from [38].

In this spirit, we propose efficient hyperinterpolation, a general scheme for approximating
unctions in the form of (1), provided that the modified moment (6) can be readily obtained.

e approximate f by its hyperinterpolant and the resulting scheme is defined as follows.

efinition 1.1. Let K ∈ L1(Ω ) and f ∈ C(Ω ). The efficient hyperinterpolation of F = K f is
efined as

Sn F :=

dn∑
ℓ=1

(∫
Ω

K (Ln f )pℓdω

)
pℓ. (7)

long with the classical hyperinterpolation (5), this scheme can be regarded as another discrete
pproximation of the L2 orthogonal projection (3). The main theoretical results of this paper
re the stability and error analysis for this scheme, and this scheme is verified to be efficient
hen the amount of quadrature points is considerably small.

Although singular and oscillatory integration was well studied in the classical literature, we
ound these studies were not widely linked to hyperinterpolation. Here is a possible explanation
or this gap. The required quadrature exactness degree 2n for a hyperinterpolant of degree n
e facto ensures a sufficient amount of numerical integration points when n is relatively large.
hus, directly evaluating the integrals (2) by the classical numerical integration methods may
lso lead to relatively satisfactory accuracy.

In a recent work [4], we discussed what if the required exactness 2n is relaxed to n + n′,
here 0 < n′

≤ n. This discussion provides a regime where efficient hyperinterpolation
4



C. An and H.-N. Wu Journal of Approximation Theory 299 (2024) 106013

c
e

b

w
T
d
a

o
T
a
T
p
w
h

2

o
i
(
q
o

2

p
e

(

a

t

may perform much more accurately than classical hyperinterpolation. In particular, if K is
ontinuous, we show that for the classical hyperinterpolation of degree n, the approximation
rror is bounded as

∥Ln F − F∥2 ≲ En′ (K f ),

where En′ (g) = infχ∈Pn′ ∥g − χ∥∞ denotes the best uniform approximation error of g ∈ C(Ω )
y a polynomial in Pn′ ; while for efficient hyperinterpolation of degree n, there holds

∥Sn F − F∥2 ≲ En′ ( f ) + En(Kχ∗),

here χ∗
∈ Pn′ is the best uniform approximation of f in Pn′ , that is, ∥ f − χ∗

∥∞ = En′ ( f ).
hus, if n′ < n, f is smooth enough, and K is awkward enough to be approximated by lower
egree polynomials, then the controlling term En′ (K f ) is considerably greater than En′ ( f ),
sserting the outperformance of efficient hyperinterpolation in this scenario.

The rest of this paper is organized as follows. In the next section, we review some results
f the classical hyperinterpolation and discuss some properties of the efficient modification.
he implementation of efficient hyperinterpolation is elaborated in Section 3. In Section 4, we
nalyze the stability and the error bound for efficient hyperinterpolation when K ∈ L1(Ω ).
his analysis is refined in Section 5 with the assumptions that K ∈ L2(Ω ) and K ∈ C(Ω ). In
articular, we discuss in Section 5.3 why the classical hyperinterpolation may be inefficient
hen approximating functions in the form of (1). In Section 6, we investigate efficient
yperinterpolation on the interval and the sphere, respectively, and give some numerical results.

. Hyperinterpolation and efficient hyperinterpolation

Hyperinterpolation (5) uses classical numerical integration methods to evaluate the L2

rthogonal projection coefficients (2). However, the classical methods prove to be inefficient
n the presence of a singular or an oscillatory K . Thus, we propose efficient hyperinterpolation
7) to achieve satisfactory approximation accuracy by using a considerably small amount of
uadrature points. In this section, we review some results of (5) and discuss some properties
f (7).

.1. Hyperinterpolation

As introduced, the original definition (5) of hyperinterpolants of degree n requires an m-
oint quadrature rule (4) with polynomial exactness 2n [37], and this requirement on quadrature
xactness has been relaxed to n + n′ with 0 < n′

≤ n recently in [4].
The definition (5) is also restricted to the approximation of continuous functions. Thus, if

K is additionally assumed to be continuous, then it was derived in [37] that Ln F defined by
5) with quadrature exactness 2n shall satisfy

∥Ln F∥2 ≤ V 1/2
∥F∥∞ (8)

nd

∥Ln F − F∥2 ≤ 2V 1/2 En(F). (9)

Let the quadrature rule (4) have exactness degree n + n′ with 0 < n′
≤ n, and let it satisfy

he Marcinkiewicz–Zygmund property that there exists an η ∈ [0, 1) such that⏐⏐⏐⏐⏐⏐
m∑

w jχ (x j )2
−

∫
Ω

χ2dω

⏐⏐⏐⏐⏐⏐ ≤ η

∫
Ω

χ2dω ∀χ ∈ Pn, (10)

j=1

5
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and η = 0 if n′
= n. The property (10) is referred to as the Marcinkiewicz–Zygmund property

as it can be regarded as the Marcinkiewicz–Zygmund inequality [11,16,24,27,28,32,33] applied
to polynomials of degree at most 2n; see [4,5] for more details. If the quadrature rule (4) with
xactness degree n + n′ satisfies the Marcinkiewicz–Zygmund property (10) with η ∈ [0, 1),
hen it was derived in [4] that

∥Ln F∥2 ≤
V 1/2

√
1 − η

∥F∥∞ (11)

nd

∥Ln F − F∥2 ≤

(
1

√
1 − η

+ 1
)

V 1/2 En′ (F). (12)

For the sake of generality, we have the following assumption for the rest of this paper.

ssumption 1. The quadrature rule (4) has exactness degree n + n′ with 0 < n′
≤ n, and it

atisfies the Marcinkiewicz–Zygmund property (10) with η ∈ [0, 1).

.2. Properties of efficient hyperinterpolation

We then make a short discussion on the relations among the L2 orthogonal projection Pn ,
yperinterpolation Ln , and efficient hyperinterpolation Sn . Note that Pnχ = χ for all χ ∈ Pn ,
hile for Ln with quadrature exactness n + n′ (0 < n′

≤ n), there only holds Lnχ = χ for all
∈ Pn′ ; see [4].
It is immediately observed that the efficient hyperinterpolation (7) can be represented in

erms of the L2 orthogonal projection Pn and hyperinterpolation Ln .

emma 2.1. Let K ∈ L1(Ω ) and f ∈ C(Ω ). Then Sn F = Pn(KLn f ).

emark 2.1. This observation in Lemma 2.1 may simplify our proofs below, but it cannot
xplain the computational benefits of the efficient hyperinterpolation and using modified
oments. The aim of this paper is to demonstrate the latter issue.

We have the following lemma on the relation between Sn and Pn .

emma 2.2. Let K ∈ L1(Ω ). Then Sn(Kχ ) = Pn(Kχ ) for all χ ∈ Pn′ .

roof. Note that Lnχ = χ for all χ ∈ Pn′ . Thus Sn(Kχ ) = Pn(KLnχ ) = Pn(Kχ ). □

We then discuss the relation between Sn and Ln . We can see that if K = 1, i.e., F = f ,
hen Sn F = Ln F . Indeed, with the property that Pnχ = χ for all χ ∈ Pn , we have
n f = Pn(Ln f ) = Ln f . If K ̸= 1, we have the following lemma.

emma 2.3. Let K ∈ L2(Ω ). Then ⟨KLn f − Sn F, χ⟩ = 0 for all χ ∈ Pn .

roof. As Sn F = Pn(KLn f ), this lemma is proved by the projection property of the
rthogonal projection Pn: For any f ∈ L2(Ω ), ⟨Pn f − f, χ⟩ = 0 for all χ ∈ Pn . □

Lemma 2.3 suggests that Sn F is the orthogonal projection of KLn f onto Pn as well as the

ollowing rather simple but important least squares property.

6
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Theorem 2.1. Let K ∈ L2(Ω ). Then

⟨KLn f − Sn F, KLn f − Sn F⟩ = min
χ∈Pn

⟨KLn f − χ, KLn f − χ⟩.

roof. For any χ ∈ Pn , we have KLn f −χ = KLn f −Sn F +Sn F −χ , and by Lemma 2.3,
e have ⟨KLn f − Sn F,Sn F − χ⟩ = 0. Thus, the Pythagorean theorem suggests

∥KLn f − Sn F∥
2
2 + ∥Sn F − χ∥

2
2 = ∥KLn f − χ∥

2
2,

hich implies ∥KLn f − Sn F∥
2
2 ≤ ∥KLn f − χ∥

2
2 for all χ ∈ Pn and ∥KLn f − Sn F∥

2
2 =

KLn f − χ∥
2
2 if χ = Sn F . Hence the theorem is proved. □

. Implementation of efficient hyperinterpolation

To implement efficient hyperinterpolation (7), the key step is to evaluate its coefficients.
ote that for ℓ = 1, 2, . . . , dn , each coefficient∫

Ω

K (Ln f )pℓdω =

∫
Ω

K

⎡⎣ dn∑
ℓ′=1

⎛⎝ m∑
j=1

w j f (x j )pℓ′ (x j )

⎞⎠ pℓ′

⎤⎦ pℓdω

=

m∑
j=1

w j

(
dn∑

ℓ′=1

pℓ′ (x j )
∫
Ω

K pℓ′ pℓdω

)
f (x j )

=

m∑
j=1

W jℓ f (x j ),

here

W jℓ := w j

(
dn∑

ℓ′=1

pℓ′ (x j )
∫
Ω

K pℓ′ pℓdω

)
, j = 1, 2, . . . , m.

hus, the weights {W jℓ} can be computed analytically or stably if one can evaluate

αℓ′ℓ :=

∫
Ω

K pℓ′ pℓdω, 1 ≤ ℓ′, ℓ ≤ dn (13)

n the same manner. Note that pℓ′ pℓ is another polynomial of degree n1 + n2, where n1 :=

eg pℓ′ and n2 := deg pℓ. Thus, it can be expanded as

pℓ′ pℓ =

dn1+n2∑
r=1

cr qr ,

here {qr }
d2n
r=1 is an orthonormal basis of P2n , which could be chosen from the same orthogonal

amily of {pℓ} or not, and the coefficients

cr :=

∫
Ω

pℓ′ pℓqr dµ, r = 1, 2, . . . , dn1+n2 . (14)

n the expression (14), dµ is the Lebesgue–Stieltjes measure associated with µ. Sometimes we
ay have dµ(x) = µ(x)dx , and µ(x) is referred to as the weight function of the orthogonal

amily {q }.
r

7
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As introduced, it is generally assumed that the modified moments

βr :=

∫
Ω

K qr dω (15)

an be computed by using special functions or invoking some stable iterative procedures. In the
mplementation of efficient hyperinterpolation, we adopt this assumption for r = 1, 2, . . . , d2n .
hus, the weights

W jℓ = w j

dn∑
ℓ′=1

pℓ′ (x j )αℓ′ℓ = w j

⎡⎣ dn∑
ℓ′=1

pℓ′ (x j )

⎛⎝dn1+n2∑
r=1

crβr

⎞⎠⎤⎦ (16)

an be computed analytically or stably for j = 1, 2, . . . , m and ℓ = 1, 2, . . . , dn .
The above discussion suggests how to implement efficient hyperinterpolation (7) in the form

f

Sn F =

dn∑
ℓ=1

⎛⎝ m∑
j=1

W jℓ f (x j )

⎞⎠ pℓ. (17)

ere is a pseudocode describing the whole procedure, which is easy to be implemented.

Algorithm. Efficient hyperinterpolant (7) for the approximation of F = K f

Compute the modified moments (15) for r = 1, 2, . . . , d2n, save as {βr }
d2n
r=1;

for ℓ = 1 : dn

for ℓ′
= 1 : dn

for r = 1 : dn1+n2 % n1+n2 = degree of pℓ′ pℓ

cr = ⟨pℓ′ pℓ, qr ⟩;

end

αℓ′ℓ =
∑dn1+n2

r=1 crβr;

end

for j = 1 : m
W jℓ = w j

∑dn
ℓ′=1 pℓ′ (x j )αℓ′ℓ

end

end

Sn F =
∑dn

ℓ=1

(∑m
j=1 W jℓ f (x j )

)
pℓ.

4. Exploratory estimate: K ∈ L1(Ω )

We now analyze efficient hyperinterpolation for the approximation of F = K f when
K ∈ L1(Ω ). This case is the most general one among K ∈ L1(Ω ), L2(Ω ), and C(Ω ), as
here holds C(Ω ) ⊂ L2(Ω ) ⊂ L1(Ω ) for a bounded and closed subset Ω of Rs . As L1(Ω ) does
ot carry any inner products, we can only give a general but rough analysis. Besides, since

F = K f ∈ L1(Ω ), we can only give an L1 error analysis. We shall refine our analysis in the
ext section by assuming K ∈ L2(Ω ) and C(Ω ).

heorem 4.1. Given K ∈ L1(Ω ) and f ∈ C(Ω ), let F = K f and let Sn F be defined as (7),
here the m-point quadrature rule (4) fulfills Assumption 1. Then

∥Sn F∥2 ≤
V 1/2 An
√ ∥ f ∥∞, (18)
1 − η

8
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w

w
t
l

where

An =

√ dn∑
ℓ=1

dn∑
ℓ′=1

α2
ℓ′ℓ

ith αℓ′ℓ defined as (13), and

∥Sn F − F∥1 ≤

(
V An

√
1 − η

+ ∥K∥1

)
En′ ( f ) +

(
V 1/2

dn∑
ℓ=1

∥pℓ∥∞ + 1

)
E (1)

n (Kχ∗), (19)

where E (1)
n (g) := infχ∈Pn ∥g − χ∥1, and χ∗

∈ Pn′ is the best uniform approximation of f in
Pn′ .

Proof. By Parseval’s identity, we have

∥Sn F∥
2
2 =

dn∑
ℓ=1

(∫
Ω

K (Ln f )pℓdω

)2

=

dn∑
ℓ=1

(
dn∑

ℓ′=1

⟨ f, pℓ′⟩m

∫
Ω

K pℓ′ pℓdω

)2

.

By applying the Cauchy–Schwarz inequality and Parseval’s identity again, we have

∥Sn F∥
2
2 ≤

dn∑
ℓ=1

(
dn∑

ℓ′=1

⟨ f, pℓ′⟩
2
m

)(
dn∑

ℓ′=1

α2
ℓ′ℓ

)
= ∥Ln f ∥

2
2

dn∑
ℓ=1

dn∑
ℓ′=1

α2
ℓ′ℓ,

which leads to ∥Sn F∥2 ≤ An∥Ln f ∥2. By the stability result (11) with F changed to f , we
have the stability result (18). For any χ ∈ Pn′ , we have

∥Sn F − F∥1 = ∥Sn(F − Kχ ) − (F − Kχ ) + (Sn(Kχ ) − Kχ )∥1

≤ V 1/2
∥Sn(F − Kχ )∥2 + ∥F − Kχ∥1 + ∥Sn(Kχ ) − Kχ∥1

≤
V An

√
1 − η

∥ f − χ∥∞ + ∥K∥1∥ f − χ∥∞ + ∥Sn(Kχ ) − Kχ∥1,

here the last inequality is obtained by applying the stability result (18) and Hölder’s inequality
o F − Kχ = K ( f − χ ), respectively. As the above estimate applied to an arbitrary χ ∈ Pn′ ,
etting χ = χ∗ gives

∥Sn F − F∥1 ≤

(
V An

√
1 − η

+ ∥K∥1

)
En′ ( f ) + ∥Sn(Kχ∗) − Kχ∗

∥1. (20)

By Lemma 2.2, the term ∥Sn(Kχ∗) − Kχ∗
∥1 = ∥Pn(Kχ∗) − Kχ∗

∥1. Thus for any χ ∈ Pn ,
we have Pn(Kχ∗) − Kχ∗

= Pn(Kχ∗
− χ ) − (Kχ∗

− χ ) and

∥Pn(Kχ∗) − Kχ∗
∥1 ≤ V 1/2

∥Pn(Kχ∗
− χ )∥2 + ∥Kχ∗

− χ∥1.

As for any g ∈ L1(Ω ), there holds

∥Png∥2 =

(
dn∑

ℓ=1

(∫
Ω

gpℓdω

)2
)1/2

≤

dn∑
ℓ=1

⏐⏐⏐⏐∫
Ω

gpℓdω

⏐⏐⏐⏐
≤

dn∑
∥gpℓ∥1 ≤ ∥g∥1

dn∑
∥pℓ∥∞,
ℓ=1 ℓ=1

9
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we have

∥Pn(Kχ∗) − Kχ∗
∥1 ≤

(
V 1/2

dn∑
ℓ=1

∥pℓ∥∞ + 1

)
∥Kχ∗

− χ∥1.

Since this estimate applied to an arbitrary χ ∈ Pn , we have

∥Pn(Kχ∗) − Kχ∗
∥1 ≤

(
V 1/2

dn∑
ℓ=1

∥pℓ∥∞ + 1

)
E (1)

n (Kχ∗).

Together with (20), we have the error bound (19). □

5. Refined estimates: K ∈ L2(Ω ) and C(Ω )

We then refine our general analysis in Section 4 by assuming K ∈ L2(Ω ) and C(Ω ),
respectively. Inner products emerge as a powerful tool in such refinement. For example, we
used the estimate ∥Png∥2 ≤ ∥g∥1

∑dn
ℓ=1 ∥pℓ∥∞ for g ∈ L1(Ω ) in the proof of Theorem 4.1,

ut we have

∥Png∥2 ≤ ∥g∥2 ∀g ∈ L2(Ω ), (21)

nd

∥Png∥2 ≤ V 1/2
∥g∥∞ ∀g ∈ C(Ω ) (22)

ith the aid of inner products. Indeed, the inequality (21) is none other than Bessel’s inequality,
nd by generalized Hölder’s inequality, we have ∥g∥2 ≤ V 1/2

∥g∥∞ for g ∈ C(Ω ).

.1. Analysis with K ∈ L2(Ω )

When K ∈ L2(Ω ), we have the following theorem.

heorem 5.1. Let K ∈ L2(Ω ) and adopt the conditions of Theorem 4.1. Then

∥Sn F∥2 ≤ ∥K∥2∥Ln∥∞∥ f ∥∞, (23)

here ∥Ln∥∞ denotes the norm of Ln as an operator from C(Ω ) to C(Ω ), and

∥Sn F − F∥2 ≤ (1 + ∥Ln∥∞)∥K∥2 En′ ( f ) + 2E (2)
n (Kχ∗), (24)

here E (2)
n (g) := infχ∈Pn ∥g − χ∥2, and χ∗

∈ Pn′ is the best uniform approximation of f in
n′ .

roof. Recall that Sn F = Pn(KLn f ). Thus, Bessel’s inequality (21) suggests ∥Sn f ∥2 ≤

KLn f ∥2. By the generalized Hölder’s inequality,

∥Sn F∥2 ≤ ∥K∥2∥Ln f ∥∞ ≤ ∥K∥2∥Ln∥∞∥ f ∥∞.

or any χ ∈ Pn′ , we have

∥Sn F − F∥2 = ∥Sn(F − Kχ ) − (F − Kχ ) + (Sn(Kχ ) − Kχ )∥2

≤ ∥Sn(F − Kχ )∥2 + ∥F − Kχ∥2 + ∥Sn(Kχ ) − Kχ∥2
≤ ∥K∥2∥Ln∥∞∥ f − χ∥∞ + ∥K∥2∥ f − χ∥∞ + ∥Sn(Kχ ) − Kχ∥2,

10
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where the last inequality is obtained by applying the stability (23) and generalized Hölder’s
nequality to F − Kχ = K ( f − χ ), respectively. Letting χ = χ∗ gives

∥Sn F − F∥2 ≤ (∥L∥∞ + 1) ∥K∥2 En′ ( f ) + ∥Sn(Kχ∗) − Kχ∗
∥2. (25)

Similar to the proof of Theorem 4.1, Lemma 2.2 implies ∥Sn(Kχ∗)−Kχ∗
∥2 = ∥Pn(Kχ∗)−

Kχ∗
∥2. By the estimate (21), for any χ ∈ Pn , we have

∥Pn(Kχ∗) − Kχ∗
∥2 ≤ ∥Pn(Kχ∗

− χ )∥2 + ∥Kχ∗
− χ∥2 ≤ 2∥Kχ∗

− χ∥2.

Since this estimate applied to an arbitrary χ ∈ Pn , we have ∥Pn(Kχ∗)−Kχ∗
∥2 ≤ 2E (2)

n (Kχ∗).
Together with (25), we have the error bound (24). □

Remark 5.1. For Ln with quadrature exactness 2n, some studies on ∥Ln∥∞ in various regions
can be found in [7,8,20,25,43,44,49]. This operator norm awaits further investigation for Ln
with quadrature exactness n + n′ (0 < n′ < n). Nevertheless, the norm ∥Ln∥∞ cannot be
uniformly bounded by any constant in general.

Remark 5.2. The fact that ∥Ln∥∞ is not uniformly bounded has spurred the development of
filtered hyperinterpolation on the sphere and then on general regions [34,39,45]. The filtered
hyperinterpolation operator, as an operator from C(Ω ) → C(Ω ), has a uniformly bounded norm.
In fact, filtered hyperinterpolation represents the idea of localization in approximation theory,
see, e.g., [23,24,26,29–31]. This is a valuable tool in the design of approximation schemes, as
it enables the derivation of uniform approximation error bounds. Therefore, a possible future
work aims to incorporate the idea of localization into efficient hyperinterpolation, expecting that
an improved version of efficient hyperinterpolation with stronger approximation error estimates
could be developed.

5.2. Analysis with K ∈ C(Ω )

If K is continuous, then we have the following analysis.

Theorem 5.2. Let K ∈ C(Ω ) and adopt the conditions of Theorem 4.1. Then

∥Sn F∥2 ≤
V 1/2

√
1 − η

∥K∥∞∥ f ∥∞, (26)

here ∥Ln∥∞ denotes the norm of Ln as an operator from C(Ω ) to C(Ω ), and

∥Sn F − F∥2 ≤

(
V 1/2

√
1 − η

∥K∥∞ + ∥K∥2

)
En′ ( f ) + 2V 1/2 En(Kχ∗), (27)

where χ∗
∈ Pn′ is the best uniform approximation of f in Pn′ .

roof. In the proof of Theorem 5.1, we have obtained ∥Sn F∥2 ≤ ∥KLn f ∥2. Thus, for
K ∈ C(Ω ), by generalized Hölder’s inequality, we have ∥Sn F∥2 ≤ ∥K∥∞∥Ln f ∥2, and by
he stability result (11) of Ln , we have the stability (26) of Sn .

Similar to the case of K ∈ L2(Ω ), for any χ ∈ Pn′ , we have

∥Sn F − F∥2 ≤ ∥Sn(F − Kχ )∥2 + ∥K ( f − χ )∥2 + ∥Sn(Kχ ) − Kχ∥2

≤
V 1/2

√ ∥K∥∞∥ f − χ∥∞ + ∥K∥2∥ f − χ∥∞ + ∥Sn(Kχ ) − Kχ∥2.

1 − η

11
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Letting χ = χ∗ leads to

∥Sn F − F∥2 =

(
V 1/2

√
1 − η

∥K∥∞ + ∥K∥2

)
En′ ( f ) + ∥Sn(Kχ∗) − Kχ∗

∥2. (28)

By Lemma 2.2 and the estimate (22), for any χ ∈ Pn , we have

∥Sn(Kχ∗) − Kχ∗
∥2 = ∥Pn(Kχ∗) − Kχ∗

∥2 ≤ ∥Pn(Kχ∗
− χ )∥2 + ∥Kχ∗

− χ∥2

≤ V 1/2
∥Kχ∗

− χ∥∞ + V 1/2
∥Kχ∗

− χ∥∞

= 2V 1/2
∥Kχ∗

− χ∥∞.

Thus ∥Sn(Kχ∗)−Kχ∗
∥2 ≤ 2V 1/2 En(Kχ∗). Together with (28), we have the estimate (27). □

5.3. The potential inefficiency of classical hyperinterpolation for the approximation of
F = K f

The classical hyperinterpolation (5) is defined to approximate continuous functions. The
approximation of F = K f ∈ C(Ω ) by efficient hyperinterpolation is described by Theorem 5.2.
Thus, if we let K = 1, then both the stability result (26) and the error bound (27) of efficient
hyperinterpolation reduce to (11) and (12) of the classical hyperinterpolation, respectively,
derived in [4]. Furthermore, if the quadrature rule (4) has exactness degree 2n, that is, η = 0,
hen they reduce to the original results (8) and (9) derived by Sloan in [37].

But what if K ̸= 1 and K is awkward enough to be approximated? In this case,

∥Sn F − F∥2 ≲ En′ ( f ) + En(Kχ∗),

here χ∗ is the best uniform approximation of f in Pn′ . However, for the classical hyperin-
erpolation there holds

∥Ln F − F∥2 ≲ En′ (K f ).

hus, if f is smooth enough so that En(Kχ∗) dominates the bound of ∥Sn F − F∥2, and
f n′ < n and K is awkward enough so that En′ (K f ) is considerably greater than En(Kχ∗),
fficient hyperinterpolation shall give a better approximation than the classical one in the sense
f estimated error bounds.

On the other hand, it is inappropriate to claim that efficient hyperinterpolation is always
etter than the classical hyperinterpolation in the approximation of F = K f . If the singularity
f K is relatively weak (for a singular K ), or if K oscillates slowly (for an oscillatory K ),
hen the classical hyperinterpolation may generate a comparable or even better approximation
f F than efficient hyperinterpolation.

. Examples and numerical experiments

We now numerically investigate efficient hyperinterpolation (7) on two specific regions, the
nterval [−1, 1] ⊂ R and the unit sphere S2

⊂ R3. On each region, we test oscillatory and
ingular terms K , respectively. A key issue is how to evaluate the modified moments (15). We
hall discuss the computational issues of the moments respectively on each region and for each

K . All numerical results are carried out by using MATLAB R2022a on a laptop (16 GB RAM,

ntel CoreTM i7-9750H Processor) with macOS Monterey 12.3.

12
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6.1. On the interval

Let Ω = [−1, 1]. In this case, dn = n+1. There is merit in adopting orthogonal polynomials
as the basis [18,46] for the approximation of functions defined on [−1, 1]. In our experiments,

e let the basis for constructing Sn F be normalized Legendre polynomials {P̃ℓ}
n
ℓ=0, and

et the basis expressing P̃ℓ′ P̃ℓ be Chebyshev polynomials {Tr }
2n
r=0. Thus for any P̃ℓ′ P̃ℓ with

0 ≤ ℓ′, ℓ ≤ n, it can be expressed as P̃ℓ′ P̃ℓ =
∑2n

r=0 cr Tr , where the coefficients are given for
≥ 1 by

cr =
2
π

∫ 1

−1

P̃ℓ′ (x)P̃ℓ(x)Tr (x)
√

1 − x2
dx, r = 1, . . . , 2n,

nd for r = 0 by the same formula with the factor π/2 changed to 1/π for r = 0 [48].
n the expression of cr , (1 − x2)−0.5 is the weight function associated to the Chebyshev
olynomials, and ⟨P̃ℓ′ P̃ℓ, Tr ⟩ is divided by the factor ⟨Tr , Tr ⟩ since {Tr }

2n
r=0 are not orthonormal.

n our experiments, these coefficients {cr } are obtained by the chebcoeffs command included
n Chebfun [15]. For the quadrature rule (4), we use the Gauss–Legendre quadrature. It is
ell-known that the m-point Gauss–Legendre quadrature has exactness degree 2m − 1.
Oscillatory functions. We first test K (x) = eiκx with κ > 0, which is an oscillatory term

egularly appearing in applications. For the evaluation of

βr =

∫ 1

−1
eiκx Tr (x)dx, r = 0, 1, . . . , 2n, (29)

e invoke the stable algorithm proposed in [14] for implementing the Filon–Clenshaw–Curtis
ule [13,14]. For the function f ∈ C[−1, 1], we let f (x) = (1.2 − x2)−1.

For κ = 100, we let n = 120 and m = 70; that is, the theoretical error of classical
yperinterpolation is controlled by E19(ei100x f ), while that of efficient hyperinterpolation is
ontrolled by E19( f ) and E120(ei100xχ∗), where χ∗

∈ P19 is the best uniform approximation of
f in P19. The approximation results are displayed in Fig. 1, in which we see that efficient
yperinterpolation generates a good approximation, but the classical one fails to do so.
oreover, for κ = 160, we let n = 180 and m = 100; that is, the theoretical error of classical

yperinterpolation is controlled by E19(ei160x f ), while that of efficient hyperinterpolation is
ontrolled by E19( f ) and E180(ei160xχ∗), where χ∗

∈ P19 is the best uniform approximation of
f in P19. The approximation results are displayed in Fig. 2, which convey the same message
as the case of κ = 100.

We continue with a more detailed investigation on the approximation of F(x) = eiκx (1.2 −

x2)−1 with κ = 100 and 160. For κ = 100, we test n = 100, 120, and 150; for κ = 160,
we consider n = 160, 180, and 210. For each (κ, n), we test several numbers m of quadrature
points. The L2 errors of each hyperinterpolant are listed in Table 1; these errors are evaluated by
the command norm in Chebfun, with the function F and its approximants treated as Chebfun
objects. In each setting, the error of efficient hyperinterpolation is always less than that of
classical hyperinterpolation. Apart from this, Table 1 conveys some other interesting messages.

Let n be fixed. When the exactness degree of the quadrature rule is less than 2n, i.e., 2m −

1 < 2n, the limited number of quadrature points slow the convergence of classical hy-
perinterpolation, as its error bound is controlled by En′ (K f ) = E2m−1−n(K f ). Meanwhile,
fficient hyperinterpolation may work well because its error bound is controlled by En′ ( f ) =

E2m−1−n( f ) and En(K f ). When 2m − 1 ≥ 2n, by our analysis, the accuracy of both schemes
nly depends on n.
13
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Fig. 1. Approximation of F(x) = eiκx (1.2 − x2)−1 by Ln and Sn with (κ, n, m) = (100, 120, 70).

Fig. 2. Approximation of F(x) = eiκx (1.2 − x2)−1 by Ln and Sn with (κ, n, m) = (160, 180, 100).

On the other hand, let m be fixed. When 2m − 1 < 2n, increasing n may not help
n improving the accuracy of classical hyperinterpolation; on the contrary, it may slow its
onvergence, as E2m−1−n(K f ) is enlarged as n increases. However, if En(K f ) dominates the
rror bound of efficient hyperinterpolation, then increasing n shall improve the accuracy of
fficient hyperinterpolation.
14
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Table 1
Errors of hyperinterpolation and efficient hyperinterpolation with different (n, m) for the approximation of F(x) =

K (x) f (x) with K (x) = eiκx and f (x) = (1.2 − x2)−1, with κ = 100 and 160.

m n = 100 n = 120 n = 150
K (x) = ei100x K (x) = ei100x K (x) = ei100x

∥Ln F − F∥2 ∥Sn F − F∥2 ∥Ln F − F∥2 ∥Sn F − F∥2 ∥Ln F − F∥2 ∥Sn F − F∥2

60 2.1437 0.2064 2.3310 2.1556 2.7565 2.6291
70 1.7667 0.2064 2.1339 3.7060e−04 2.3565 2.3635
80 1.3929 0.2064 1.7547 8.2733e−06 2.2603 0.02830
100 0.3428 0.2064 1.0354 8.2730e−06 1.5477 8.3481e−10
120 0.2064 0.2064 1.8091e−05 8.2730e−06 0.7998 1.4644e−13
150 0.2064 0.2064 8.2730e−06 8.2730e−06 9.6996e−14 9.2094e−14
180 0.2064 0.2064 8.2730e−06 8.2730e−06 7.6783e−14 6.9940e−14

m n = 160 n = 180 n = 210
K (x) = ei160x K (x) = ei160x K (x) = ei160x

∥Ln F − F∥2 ∥Sn F − F∥2 ∥Ln F − F∥2 ∥Sn F − F∥2 ∥Ln F − F∥2 ∥Sn F − F∥2

70 2.6149 2.3755 2.8822 2.5556 3.2681 2.8106
100 2.0502 0.2014 2.2357 3.7455e−04 2.3368 2.3372
120 1.5749 0.2014 1.7994 5.8491e−05 2.1408 4.8505e−06
150 0.8957 0.2014 1.1128 5.8491e−05 1.4421 1.6188e−13
180 0.2014 0.2014 1.1543e−04 5.8491e−05 0.7253 1.4140e−13
210 0.2014 0.2014 5.8491e−05 5.8491e−05 2.9417e−13 2.0787e−13
240 0.2014 0.2014 5.8491e−05 5.8491e−05 1.2553e−13 1.2040e−13

Singular functions. We then test three singular terms K , which are

K (x) =

⎧⎪⎨⎪⎩
(1 + x)−1/3,

|x − 1|
−0.2,

(1 − x2)−0.5.

or the first two cases, we compute

βr =

∫ 1

−1
K (x)Tr (x)dx, r = 0, 1, . . . , 2n,

y the built-in command quadgk in MATLAB, which is a stable procedure developed in [36].
or the third case, as (1 − x2)−0.5 is the weight function associated to the Chebyshev
olynomials, we have β0 = π and βr = 0 for all r ≥ 1. For the continuous function

f ∈ C[−1, 1], we let f (x) = e−x2
.

For each K , we report the L1 errors of classical and efficient hyperinterpolation with
= 6, 9, 12, . . . , 120, and m = ⌈1.1n/2⌉, ⌈1.2n/2⌉, and ⌈1.5n/2⌉. These errors are evaluated

umerically by the MATLAB built-in command quadgk, and they are plotted in Fig. 3. We
an summarize from these errors that when the available data (the number of quadrature
oints) is limited, then the error of efficient hyperinterpolation is generally less than that of
lassical hyperinterpolation. It is also interesting to see that classical hyperinterpolation may
erform better than efficient hyperinterpolation as the amount of quadrature points increases.
or example, see the subplots on the bottom left and bottom right of Fig. 3. An interesting
elated fact is that the functions K (x) = (1 + x)−1/3 and K (x) = (1 − x2)−0.5 is smoother

−0.2
han K (x) = |x − 1| in the sense of differentiability. Hence, it is interesting to identify

15
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Fig. 3. Errors of hyperinterpolation and efficient hyperinterpolation with different (n, m) for the approximation of
F(x) = K (x) f (x) with three singular K ’s and f (x) = e−x2

. From top row to bottom row: m = ⌈1.1n/2⌉, ⌈1.2n/2⌉,
nd ⌈1.5n/2⌉, respectively.

he critical number of quadrature points that the outperformance of the classical and efficient
yperinterpolation switches as future work. In particular, this critical number may be related
o the smoothness of F .

.2. On the sphere

Let Ω = S2
⊂ R3 with dω(x) = ω(x)dx , where ω(x) is an area measure on S2. Thus

V =
∫
S2 dω = 4π denotes the surface area of S2. In this example, Pn can be regarded as the

pace of spherical polynomials of degree at most n. Let the basis {pℓ}
dn
ℓ=1 be a set of orthonormal

eal spherical harmonics {Yℓ,k : ℓ = 0, 1, . . . , n, and k = −ℓ, −ℓ + 1, . . . , ℓ − 1, ℓ}, and the
imension of Pn is dn = dimPn = (n + 1)2. Let {qr }

d2n
r=1 also be the set of orthonormal real

pherical harmonics {Yℓ,k : ℓ = 0, 1, . . . , 2n, and k = −ℓ, −ℓ + 1, . . . , ℓ − 1, ℓ}.
For the quadrature rule (4), we use the rule based on spherical t-designs, which can be

mplemented easily and efficiently. A point set {x1, x2, . . . , xm} ⊂ S2 is said to be a spherical
-design [12] if it satisfies

1
m

m∑
j=1

v(x j ) =
1

4π

∫
S2

vdω ∀v ∈ Pt . (30)

n other words, it is a set of points on the sphere such that an equal-weight quadrature
ule in these points integrates all (spherical) polynomials up to degree t exactly. Spherical

t-designs require at least (t + 1)2 quadrature points to achieve the exactness degree t . For
generating spherical t-designs, we make use of the well-conditioned spherical t-designs [2]
with m = (t + 1)2.
16
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For any Yℓ′,k′Yℓ,k with 0 ≤ ℓ′, ℓ ≤ n, −ℓ′
≤ k ′

≤ ℓ′, and −ℓ ≤ k ≤ ℓ, it can be expressed
s

Yℓ′,k′Yℓ,k =

2n∑
ℓ′′=0

ℓ′′∑
k′′=−ℓ′′

cℓ′′k′′Yℓ′′,k′′ ,

here the coefficients

cℓ′′k′′ =

∫
S2

(Yℓ′,k′Yℓ,k)Yℓ′′,k′′dω, ℓ′′
= 0, . . . , 2n, k ′′

= −ℓ′′, . . . , ℓ′′

re evaluated by a quadrature rule using spherical (ℓ + ℓ′
+ ℓ′′)-designs.

We may use boldface letters to denote a point on S2, say x = [x, y, z]T, in order to avoid
ny potential ambiguity. The Euclidean distance between two points ξ and x on the sphere S2

s defined as |ξ − x| :=
√

2(1 − ξ · x), where “·” denotes the inner product in R3.
Oscillatory functions. The spherical harmonics themselves are highly oscillatory when their

degrees become large. Thus we let K = Yℓ̄,k̄ for some ℓ̄, k̄ ∈ N. In this case, the modified
moments can be evaluated by

βr := βℓ′′k′′ =

∫
S2

Yℓ̄,k̄Yℓ′′,k′′dω = δℓ̄,ℓ′′δk̄,k′′ .

For the continuous function f ∈ C(S2), we let f (x) = f (x, y, z) = cos(cosh(xz) − 2y).
We investigate two kinds of oscillatory terms, (ℓ̄, k̄) = (12, 8) and (32, −24). For K = Y12,8,

we let n = 20 and m = 625, that is, t = 24, the theoretical error of classical hyperinterpolation
is controlled by E4(Y12,8 f ), while that of efficient hyperinterpolation is controlled by E4( f ) and
E20(Y12,8χ

∗), where χ∗
∈ P4 is the best uniform approximation of f in P4. The approximation

results are displayed in the upper row of Fig. 4, in which we see that efficient hyperinterpolation
generates a good approximation, but the classical one does not. For K = Y32,−24, we let
n = 40 and m = 2209, that is, t = 46, the theoretical error of classical hyperinterpolation is
controlled by E6(Y32,−24 f ), while that of efficient hyperinterpolation is controlled by E6( f )
and E40(Y32,−24χ

∗), where χ∗
∈ P6 is the best uniform approximation of f in P6. The

approximation results are displayed in the lower row of Fig. 4, which convey the same message
as the case of K = Y12,8.

Similar to Table 1, we list the L2 errors of the classical and efficient hyperinterpolation
in different settings in Table 2. These errors are evaluated by the command norm in Sphere-
fun [47], a part of Chebfun for computing with functions defined on the surface of the unit
sphere, and the functions and their approximants are regarded as Spherefun objects. We see
that the error of efficient hyperinterpolation is always less than (or eventually equal to) that of
the classical hyperinterpolation.

Singular functions. For singular functions, we test three different singular terms. Their
forms and the evaluation of modified moments

βr := βℓ′′k′′ =

∫
S2

K (x)Yℓ′′,k′′ (x)dω(x), ℓ′′
= 0, . . . , 2n, k ′′

= −ℓ′′, . . . , ℓ′′

are elaborated as follows.

• Let K (x) = |ξ − x|
ν , where ν > −1, and ξ is an algebraic type singularity if ν < 0.

Then

βℓ′′k′′ = 2ν+2π
(
−

ν ) Γ ( ν+2
2 )

Yℓ′′,k′′ (ξ ),

2 ℓ′′ Γ (ℓ′′ + ν/2 + 2)
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L

T
t

Fig. 4. Approximation of F = Y12,8 f and F = Y32,−24 f with f (x, y, z) = cos(cosh(xz)−2y) by hyperinterpolation
n and efficient hyperinterpolation Sn .

where Γ (·) is the Gamma function, and (·)n = Γ (· + n)/Γ (·) is the Pochhammer
symbol [6].

• Let K (x) = log |ξ − x|, where ξ is a logarithmic type singularity. Then

βℓ′′k′′ =
|S1

|

2

(∫ 1

−1
log(2(1 − t))Pℓ′′ (t)dt

)
Yℓ′′,k′′ (ξ ), (31)

where |S1
| = 2π is the length of the unit circle S1, and Pℓ denote the Legendre

polynomials of degree ℓ (without normalization).
• Let K (x) = |ξ − x|

ν1 |ξ + x|
ν2 , where ν1, ν2 > −1, and ξ and −ξ are two algebraic type

singularities if ν1, ν2 < 0. Then

βℓ′′k′′ =(−1)ℓ
′′

2(ν1+ν2)/2
|S1

|Rℓ,3(∫ 1

−1
(1 − t)ν1/2(1 + t)ν2/2

[(
d
dt

)ℓ′′

(1 − t2)ℓ
′′

]
dt

)
Yℓ′′,k′′ (ξ ),

where

Rn,s =
Γ ( s−1

2 )

2nΓ (n +
s−1

2 )
.

here results can be found in [6, Chapter 3]. In particular, the modified moments of the third
erm can be evaluated by

βℓ′′k′′ = 2(ν1+ν2)/2
|S1

|

(∫ 1

(1 − t)ν1/2(1 + t)ν2/2 Pℓ′′ (t)dt
)

Yℓ′′,k′′ (ξ ), (32)

−1

18
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Table 2
Errors of hyperinterpolation and efficient hyperinterpolation with different (n, m) for the approximation of
F(x, y, z) = K (x, y, z) f (x, y, z) with two K ’s and f (x, y, z) = cos(cosh(xz) − 2y).

m n = 16 n = 18 n = 20
K (x) = Y12,8(x) K (x) = Y12,8(x) K (x) = Y12,8(x)

∥Ln F − F∥2 ∥Sn F − F∥2 ∥Ln F − F∥2 ∥Sn F − F∥2 ∥Ln F − F∥2 ∥Sn F − F∥2

484 0.1427 0.0116 0.1359 0.0092 0.1233 0.0082
529 0.1271 0.0097 0.1160 0.0031 0.1181 0.0044
576 0.1090 0.0086 0.0993 9.1533e−04 0.0932 8.0575e−04
625 0.0910 0.0086 0.0973 7.0753e−04 0.0861 2.9376e−04
841 0.0530 0.0086 0.0425 5.9738e−04 0.0439 5.9812e−05
1089 0.0285 0.0086 0.0189 5.9737e−04 0.0112 5.9767e−05
1369 0.0098 0.0086 6.4698e−04 5.9737e−04 1.6743e−04 5.9767e−05
1681 0.0086 0.0086 5.9749e−04 5.9737e−04 5.9776e−05 5.9767e−05
2025 0.0086 0.0086 5.9737e−04 5.9737e−04 5.9767e−05 5.9767e−05

m n = 36 n = 38 n = 40
K (x) = Y32,−24(x) K (x) = Y32,−24(x) K (x) = Y32,−24(x)

∥Ln F − F∥2 ∥Sn F − F∥2 ∥Ln F − F∥2 ∥Sn F − F∥2 ∥Ln F − F∥2 ∥Sn F − F∥2

1849 0.2092 0.0086 0.1868 0.0031 0.1674 0.0028
2025 0.1622 0.0083 0.1469 6.3438e−04 0.1433 2.7101e−04
2209 0.1327 0.0083 0.1295 5.9311e−04 0.1252 4.7438e−05
2401 0.1180 0.0083 0.1160 5.9286e−04 0.1167 4.4752e−05
3249 0.0736 0.0083 0.0689 5.9286e−04 0.0673 4.4728e−05
4225 0.0432 0.0083 0.0391 5.9286e−04 0.0350 4.4728e−05
5329 0.0174 0.0083 0.0091 5.9286e−04 0.0053 4.4728e−05
6561 0.0083 0.0083 5.9286e−04 5.9286e−04 4.4731e−05 4.4728e−05
7921 0.0083 0.0083 5.9282e−04 5.9286e−04 4.4728e−05 4.4728e−05

with the aid the Rodrigues’ formula

Pn(x) =
1

2nn!

(
d

dx

)n [
(x2

− 1)n]
= (−1)n 1

2nn!

(
d

dx

)n

(1 − x2)n

or Legendre polynomials.1 For the continuous function f ∈ C(S2), we consider the Franke’s
est functions in three variables

f1(x) = f1(x, y, z) =0.75 exp(−(9x − 2)2/4 − (9y − 2)2/4 − (9z − 2)2/4)

+ 0.75 exp(−(9x + 1)2/49 − (9y + 1)/10 − (9z + 1)/10)

+ 0.5 exp(−(9x − 7)2/4 − (9y − 3)2/4 − (9z − 5)2/4)

− 0.2 exp(−(9x − 4)2
− (9y − 7)2

− (9z − 5)2),

(33)

hich is analytic on the sphere, and

f2(x) = f2(x, y, z) = exp(x2
+ y2

+ z2). (34)

1 It may be unstable to evaluate the integral
∫ 1
−1(1 − t)ν1/2(1 + t)ν2/2( d

dt )n(1 − t2)ndt by taking the nth derivative
and then evaluating the resulting integral, as the factor accumulated as n! after differentiation may be huge. Thus
he error of representing numbers by double-precision floating-point numbers, according to IEEE Standard 754,

ay be inaccurate.
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Fig. 5. Errors of hyperinterpolation and efficient hyperinterpolation with different (n, m) for the approximation of
F(x, y, z) = K (x, y, z) f1(x, y, z) with three singular K ’s and f1(x, y, z) defined as (33). The singularity ξ in the
efinitions of K (x) is set as ξ = [

√
2/2,

√
2/2, 0]T. From top row to bottom row: m = (⌈1.1n⌉+1)2, (⌈1.2n⌉+1)2,

nd (⌈1.5n⌉ + 1)2, respectively.

The integrals in modified moments (31) and (32) are evaluated by the MATLAB built-in
ommand quadgk. For each K , we report the L1 errors of classical and efficient hyperinter-
olation with n = 2, 3, 4, . . . , 40, and m = (⌈1.1n⌉ + 1)2, (⌈1.2n⌉ + 1)2, and (⌈1.5n⌉ + 1)2.
he singularity ξ in the definitions of K (x) is set as ξ = [

√
2/2,

√
2/2, 0]T. These errors of

pproximating f1 and f2 are numerically evaluated by a 50,000-point equal-weight quadrature
rule, and they are plotted in Figs. 5 and 6, respectively. Unlike the experiments on the
singular functions with endpoint singularities on [−1, 1], all singularities on the sphere are
interior. Thus, the numerical integration of spherical singular functions becomes extremely
unstable: the actual performance of numerical integration depends on the point distribution
around the singularities. This technical issue is also reflected in the approximation of singular
functions by numerically integrating the L2 projection coefficients, i.e., the approximation by
classical hyperinterpolation. We see from Figs. 5 and 6 that it seems impossible to predict
the actual accuracy of classical hyperinterpolation in the approximation of F(x, y, z) =

K (x, y, z) f (x, y, z) with f defined as (33), with three kinds of singular K listed above. Indeed,
the stability and error bounds of classical hyperinterpolation in [4,37] are only valid for the
approximation of continuous functions. On the other hand, we see that the actual accuracy of
efficient hyperinterpolation is stable and predictable: the point distribution around singularities
does not affect the performance of efficient hyperinterpolation, and the approximation error
decays as n increases.

7. Final remarks

We propose efficient hyperinterpolation to approximate singular and oscillatory functions in
the essence of the product-integration rule. Efficient hyperinterpolation not only inherits crucial
properties of classical hyperinterpolation, but also yields an efficient and stable approximation
20
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Fig. 6. Errors of hyperinterpolation and efficient hyperinterpolation with different (n, m) for the approximation of
F(x, y, z) = K (x, y, z) f2(x, y, z) with three singular K ’s and f2(x, y, z) defined as (34). The singularity ξ in the
efinitions of K (x) is set as ξ = [

√
2/2,

√
2/2, 0]T. From top row to bottom row: m = (⌈1.1n⌉+1)2, (⌈1.2n⌉+1)2,

nd (⌈1.5n⌉ + 1)2, respectively.

or the expected scenarios. Error bounds in cases of K ∈ L1(Ω ), L2(Ω ), and C(Ω ) are
resented, respectively. On the other hand, an important role is played by the actionable
valuation of the modified moments for constructing efficient hyperinterpolation. Thus, much
ore effort is necessary to understand our scheme’s implementation to approximate the

unction F = K f with various singular and oscillatory terms K .
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