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LASSO HYPERINTERPOLATION OVER GENERAL REGIONS\ast 

CONGPEI AN\dagger AND HAO-NING WU\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . This paper develops a fully discrete soft thresholding polynomial approximation over
a general region, named Lasso hyperinterpolation. This approximation is an \ell 1-regularized discrete
least squares approximation under the same conditions of hyperinterpolation. Lasso hyperinter-
polation also uses a high-order quadrature rule to approximate the Fourier coefficients of a given
continuous function with respect to some orthonormal basis, and then it obtains its coefficients by
acting a soft threshold operator on all approximated Fourier coefficients. Lasso hyperinterpolation is
not a discrete orthogonal projection, but it is an efficient tool to deal with noisy data. We theoret-
ically analyze Lasso hyperinterpolation for continuous and smooth functions. The principal results
are twofold: The norm of the Lasso hyperinterpolation operator is bounded independently of the
polynomial degree, which is inherited from hyperinterpolation, and the L2 error bound of Lasso hy-
perinterpolation is less than that of hyperinterpolation when the level of noise becomes large, which
improves the robustness of hyperinterpolation. Explicit constructions and corresponding numerical
examples of Lasso hyperinterpolation over intervals, discs, spheres, and cubes are given.
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1. Introduction. Hyperinterpolation over compact subsets or manifolds was
introduced by Sloan in 1995 [38]. Coefficients of an L2 orthogonal projection from
the space of continuous functions onto the space of polynomials of degree at most
L are expressed in the form of Fourier integrals, and hyperinterpolation of degree L
is constructed by approximating these integrals via a quadrature rule that exactly
integrates all polynomials of degree at most 2L. Thus, hyperinterpolation is a numer-
ical discretization of the L2 orthogonal projection, and it is highly related to some
spectral methods in solving differential and integral equations which are known as
discrete Galerkin methods [4, 21, 22]. In the past decades, hyperinterpolation has
attracted much interest, and a lot of important works have been done; for example,
see [2, 9, 10, 12, 14, 22, 27, 34, 37, 40, 41] and references therein.

Hyperinterpolation is a discrete least squares approximation scheme with a high-
order quadrature rule assumed which was revealed in [38]; thus, it requires the con-
cerned function to be sampled on a well-chosen finite set to achieve the high algebraic
accuracy of the quadrature rule. With elements in such a set and corresponding sam-
pling values of the function deemed as input and output data, respectively, studies on
hyperinterpolation assert that it is an effective approach to modeling mappings from
input data to output data. However, in real-world applications, one possibly has noisy
samples. In this paper, we propose a novel strategy, Lasso hyperinterpolation, with
Lasso incorporated into hyperinterpolation, to handle noise. Lasso, the acronym for
``least absolute shrinkage and selection operator,"" is a shrinkage and selection method
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A3968 CONGPEI AN AND HAO-NING WU

for linear regression [42] which is blessed with the abilities of denoising and feature
selection. Lasso hyperinterpolation is a constructive approximation: Based on hyper-
interpolation, Lasso hyperinterpolation proceeds all hyperinterpolation coefficients by
a soft threshold operator. Thus, it is not only feasible to study approximation prop-
erties of it but also easy to implement this novel scheme.

When the level of noise is relatively small, least squares approximation is shown
to be able to reduce noise [24, 25, 26]. However, this method is not suitable when the
level of noise becomes large. There have been attempts to improve the robustness of
hyperinterpolation with respect to noise, for example, filtered hyperinterpolation [41]
and Tikhonov regularized discrete least squares approximation [2, 3]. Filtered hyper-
interpolation filters hyperinterpolation coefficients by some filters (for different kinds
of filters, we refer the reader to [2, 18, 39]), shrinking these coefficients continuously as
the order of the basis element increases. The mechanism of Tikhonov regularized least
squares approximation is similar; actually, it was revealed in [2] that Tikhonov regu-
larized least squares approximation reduces to filtered hyperinterpolation on the unit
two-sphere with a certain filter. Both attempts improve the performance of hyperin-
terpolation in dealing with noisy samples. However, continuous filtering or shrinking
may not work as well as Lasso hyperinterpolation in denoising, which proceeds these
coefficients by a soft threshold operator. Apart from denoising, Lasso is also blessed
with the feature selection ability. In the context of hyperinterpolation, a feature is
a basis element, and feature selection is called basis element selection in this paper.
Hyperinterpolation and its filtered variant do not hold such an ability, whereas Lasso
hyperinterpolation can select basis elements with higher relevancy to the concerned
function and dismiss the rest in order to simplify the expansion. The level of relevancy
can be determined by controlling parameters in Lasso hyperinterpolation.

We will study approximation properties of Lasso hyperinterpolation and provide
error analysis. Inherited from hyperinterpolation, the norm of the Lasso hyperinter-
polation operator is bounded independently of the polynomial degree L. However,
Lasso hyperinterpolation does not possess the convergence property of hyperinterpo-
lation as L \rightarrow \infty . It is shown that in the absence of noise, the L2 error of Lasso
hyperinterpolation for any nonzero continuous function converges to a nonzero term
which depends on the best approximation of the function, whereas such an error
of both hyperinterpolation and filtered hyperinterpolation converges to zero. How-
ever, in the presence of noise, Lasso hyperinterpolation is able to reduce the newly
introduced error term caused by noise via multiplying a factor less than one. Sim-
ilar results are also obtained when the function is blessed with additional smooth-
ness.

The rest of this paper is organized as follows. In section 2, we review some basic
ideas of quadrature and hyperinterpolation. In section 3, we display how Lasso is
incorporated into hyperinterpolation and analyze the basis element selection ability
of Lasso hyperinterpolation. In section 4, we study Lasso hyperinterpolation over
general regions, presenting some properties of the Lasso hyperinterpolation operator
and deriving error bounds. In this analysis, we consider two cases: Lasso hyperinter-
polation of continuous functions and smooth functions, respectively. Section 5 focuses
on four concrete examples on the interval, the unit disc, the unit two-sphere, and the
unit cube, respectively, and provides some numerical examples.

2. Background. In this section, we review some basic ideas of hyperinterpola-
tion. Let \Omega be a compact and smooth Riemannian manifold in \BbbR s with smooth or
empty boundary and measure d\omega . The manifold \Omega is assumed to have finite measure
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LASSO HYPERINTERPOLATION OVER GENERAL REGIONS A3969

with respect to a given positive measure d\omega , that is,\int 
\Omega 

d\omega = V < \infty .

We wish to approximate a nonzero f \in \scrC (\Omega ) (possibly noisy) by a polynomial in \BbbP L,
which is the linear space of polynomials on \Omega of degree at most L.

2.1. Quadratures. With respect to the given finite measure d\omega , an inner prod-
uct between functions v and z on \Omega is defined as

(2.1) \langle v, z\rangle =
\int 
\Omega 

vzd\omega ,

which is a definition involving integrals. Quadrature, in a computational perspective,
is a standard term for numerical computation of integrals and is also one of the
techniques by which approximation theory can be linked to applications immediately
[44]. Assume that we are given a quadrature rule of the form

(2.2)

N\sum 
j=1

wjg(xj) \approx 
\int 
\Omega 

gd\omega 

with the property that it exactly integrates all polynomials of degree at most 2L,
where \scrX N := \{ x1, . . . ,xN\} \subset \Omega is a set of N distinct points in \Omega and quadrature
weights wj are positive for all 1 \leq j \leq N . That is, we require

(2.3)

N\sum 
j=1

wjg(xj) =

\int 
\Omega 

gd\omega \forall g \in \BbbP 2L.

Based on the assumed quadrature, Sloan introduced a ``discrete inner product"" [38]

(2.4) \langle v, z\rangle N :=

N\sum 
j=1

wjv(xj)z(xj),

corresponding to the ``continuous"" inner product (2.1).

2.2. Hyperinterpolation. Hyperinterpolation is a discretization of the L2 or-
thogonal projection \scrP Lf of f \in \scrC (\Omega ) onto \BbbP L. Let d := dim\BbbP L be the dimension of
\BbbP L, and let \{ p1, . . . , pd\} \subset \BbbP L be an orthonormal basis of \BbbP L, that is,

(2.5) \langle pi, pj\rangle = \delta ij , 1 \leq i, j \leq d,

where \delta ij is the Kronecker delta. Thus, \scrP Lf is defined as

(2.6) \scrP Lf :=

d\sum 
\ell =1

\langle f, p\ell \rangle p\ell .

If the integral is evaluated by the quadrature rule, then hyperinterpolation \scrL Lf is
defined analogously to \scrP Lf .

Definition 2.1 ([38]). Given a quadrature rule (2.2) with exactness (2.3). A
hyperinterpolation of f onto \BbbP L is defined as

(2.7) \scrL Lf :=

d\sum 
\ell =1

\langle f, p\ell \rangle N p\ell .

D
ow

nl
oa

de
d 

02
/1

5/
23

 to
 1

47
.8

.2
04

.1
64

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A3970 CONGPEI AN AND HAO-NING WU

As the most degree 2L of pipj ensures the exactness (2.3) of the quadrature, we
have \langle pi, pj\rangle N = \langle pi, pj\rangle = \delta ij ; hence, the discrete inner product (2.4) also satisfies

(2.8) \langle pi, pj\rangle N = \delta ij , 1 \leq i, j \leq d.

It follows the least number of quadrature points such that the quadrature (2.2) is
exact.

Lemma 2.2 (Lemma 2 in [38]). If a quadrature rule is exact for all polynomials of
degree at most 2L, the number of quadrature points N should satisfy N \geq dim\BbbP L = d.

Definition 2.3. An N -point quadrature rule which is exact for all polynomials
of degree at most 2L is called minimal if N = d.

There are two important and practical properties of \scrL L. One is that it has the
classical interpolation property if and only if the quadrature is minimal, and the other
is that it becomes exact if f is a polynomial in \BbbP L.

Lemma 2.4 (Lemma 3 in [38]). The classical interpolation formula

(2.9) \scrL Lf(xj) = f(xj), 1 \leq j \leq N,

holds for arbitrary f \in \scrC (\Omega ) if and only if the quadrature rule is minimal.

Lemma 2.5 (Lemma 4 in [38]). If f \in \BbbP L, then \scrL Lf = f .

2.3. Filtered hyperinterpolation. Filtered hyperinterpolation [39, 40, 41, 47],
roughly speaking, makes use of a ``filter"" function h \in \scrC (\BbbR +): All coefficients \langle f, p\ell \rangle N
are filtered by h; that is, they are multiplied by h(deg p\ell /L), where deg p\ell is the degree
of p\ell . A filter function h satisfies

h(x) =

\Biggl\{ 
1 for x \in [0, 1/2],

0 for x \in [1,\infty ),

and h on [1/2, 1] has various definitions (see, e.g., [2, 39]) with the continuity of h
being ensured. A trigonometric polynomial filter [2] is used for numerical study in
this paper which defines h(x) = sin2 \pi x on [1/2, 1].

Definition 2.6. Given a quadrature rule (2.2) with exactness (2.3). A filtered
hyperinterpolation of f onto \BbbP L - 1 is defined as

(2.10) \scrF Lf =

d\sum 
\ell =1

h

\biggl( 
deg p\ell 
L

\biggr) 
\langle f, p\ell \rangle N p\ell .

From (2.10), we have \scrF Lf = f for all f \in \BbbP \lfloor L/2\rfloor , where \lfloor \cdot \rfloor is the floor function.
Recently, it was shown in [29] that (distributed) filtered hyperinterpolation can re-
duce weak noise on spherical functions. In this paper, we will compare the ability of
denoising between filtered hyperinterpolation and the following Lasso hyperinterpo-
lation; see examples in section 5.

3. Lasso hyperinterpolation. Lasso mainly aims at denoising and feature se-
lection, and it has always been investigated in a discrete way in statistics, optimiza-
tion, compressed sensing, and so forth [42, 43]. Thus, it is natural, and feasible as
well, to introduce Lasso into hyperinterpolation to handle noisy data and to simplify
the hyperinterpolation polynomial by dismissing basis elements of less relevance to
concerned function f .
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LASSO HYPERINTERPOLATION OVER GENERAL REGIONS A3971

3.1. Formulation. To introduce Lasso hyperinterpolation, we first reveal that
\scrL Lf is a solution to a least squares approximation problem which was first stated by
Sloan in 1995 [38]. For the sake of completeness, we give a proof of this remarkable
result, which is stated in Lemma 3.1. Consider the following discrete least squares
approximation problem:

(3.1) min
p\in \BbbP L

\left\{   1

2

N\sum 
j=1

wj (p(xj) - f(xj))
2

\right\}   with p(x) =

d\sum 
\ell =1

\alpha \ell p\ell (x) \in \BbbP L.

Let A \in \BbbR sN\times d be a matrix with elements [A]j\ell = p\ell (xj), j = 1, . . . , N and \ell =
1, . . . , d (recall xj \in \BbbR s), and let W be a diagonal matrix with entries \{ wj\} Nj=1. The
approximation problem (3.1) can be transformed into an equivalent approximation
problem

(3.2) min
\bfitalpha \in \BbbR d

1

2
\| W1/2(A\bfitalpha  - f)\| 22,

where \bfitalpha = [\alpha 1, . . . , \alpha d]
T \in \BbbR d is a collection of coefficients \{ \alpha \ell \} d\ell =1 in constructing p

and f = [f(x1), . . . , f(xN )]T \in \BbbR N is a vector of sampling values \{ f(xj)\} Nj=1 on \scrX N .
Since problem (3.2) is a strictly convex problem, the stationary point of the objective
is none other than the unique solution to (3.2). Taking the first derivative of the
objective in problem (3.2) with respect to \bfitalpha leads to the first-order condition

(3.3) ATWA\bfitalpha  - ATWf = 0.

Note that the assumption f \not = 0 implies \| ATWf\| \infty \not = 0. With the first-order condi-
tion (3.3), we have the following result.

Lemma 3.1 (Lemma 5 in [38]). Given f \in \scrC (\Omega ), let \scrL Lf \in \BbbP L be defined by
(2.7), where the quadrature points (all in \Omega ) and weights (all positive) in the discrete
inner product satisfy the exactness property (2.3). Then \scrL Lf is the unique solution
to the approximation problem (3.1).

Proof. The proof is based on the first-order condition (3.3). On the one hand,
the matrix ATWA is an identity matrix, as all entries of it satisfy

[ATWA]ik =

N\sum 
j=1

wjpi(xj)pk(xj) = \langle pi, pk\rangle N = \delta ik, 1 \leq i, k \leq d,

where the last equality holds due to property (2.8). On the other hand, the vector
ATWf is in fact a collection of discrete inner products:

[ATWf ]\ell =

N\sum 
j=1

wjp\ell (xj)f(xj) = \langle p\ell , f\rangle N , \ell = 1, . . . , d.

Hence, the polynomial constructed with coefficients \alpha \ell = \langle p\ell , f\rangle N is indeed \scrL Lf . The
uniqueness is due to the strict convexity of problem (3.2).

Now we start to involve Lasso into \scrL L. From the original idea of Lasso [42],
it restricts the sum of absolute values of coefficients to be bounded by some positive
number, say, \eta . Then, for p =

\sum d
\ell =1 \alpha \ell p\ell , incorporating Lasso into \scrL L can be achieved
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A3972 CONGPEI AN AND HAO-NING WU

via solving the constrained least squares problem

(3.4) min
p\in \BbbP L

\left\{   1

2

N\sum 
j=1

wj (p(xj) - f(xj))
2

\right\}   subject to

d\sum 
\ell =1

| \alpha \ell | \leq \eta .

Solving this problem is equivalent to solving the following regularized least squares
approximation problem

(3.5) min
p\in \BbbP L

\left\{   1

2

N\sum 
j=1

wj (p(xj) - f(xj))
2
+ \lambda 

d\sum 
\ell =1

| \mu \ell \beta \ell | 

\right\}   with p =

d\sum 
\ell =1

\beta \ell p\ell \in \BbbP L,

where \lambda > 0 is the regularization parameter and \{ \mu \ell \} d\ell =1 is a set of positive penalty
parameters. We make two comments on problem (3.5): We adopt new notation \beta \ell 
instead of using \alpha \ell in order to distinguish the coefficients of Lasso hyperinterpolation
from those of \scrL L, and we introduce a sequence \{ \mu \ell \} d\ell =1 of penalty parameters into
the model so that the model could be more general and more flexible. The solution
to problem (3.4) is also a solution to problem (3.5) when \mu \ell = 1 for all \ell = 1, . . . , d.

The solution to problem (3.5) is our Lasso hyperinterpolation polynomial. We
directly give the definition of Lasso hyperinterpolation first and then show that the
Lasso hyperinterpolation polynomial is indeed the solution to (3.5). To describe it,
we need the notion of soft threshold operator.

Definition 3.2. The soft threshold operator, denoted by \scrS k(a), is defined as
\scrS k(a) := max(0, a - k) + min(0, a+ k).

We add \lambda as a superscript into \scrL Lf , denoting that this is a regularized version
(Lasso regularized) of \scrL L with regularization parameter \lambda .

Definition 3.3. Given a quadrature rule (2.2) with exactness (2.3). A Lasso
hyperinterpolation of f onto \BbbP L is defined as

(3.6) \scrL \lambda Lf :=

d\sum 
\ell =1

\scrS \lambda \mu \ell 
(\langle f, p\ell \rangle N ) p\ell , \lambda > 0.

The logic of Lasso hyperinterpolation is to process each coefficient \langle f, p\ell \rangle N of
hyperinterpolation by a soft threshold operator \scrS \lambda \mu \ell 

(\cdot ). Then we revisit problem
(3.5).

Let R \in \BbbR d\times d be a diagonal matrix with entries \{ \mu \ell \} d\ell =1. Similar to the process
from (3.1) to (3.2), problem (3.5) can also be transformed into

(3.7) min
\bfitbeta \in \BbbR d

1

2
\| W1/2(A\bfitbeta  - f)\| 22 + \lambda \| R\bfitbeta \| 1, \lambda > 0,

where \bfitbeta = [\beta 1, . . . , \beta d]
T \in \BbbR d. As the convex term \| \cdot \| 1 is nonsmooth, some sub-

differential calculus of convex functions [5] is needed. Then we have the following
result.

Theorem 3.4. Let \scrL \lambda Lf \in \BbbP L be defined by (3.6), and adopt conditions of Lemma
3.1. Then \scrL \lambda Lf is the solution to the regularized least squares approximation problem
(3.5).
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LASSO HYPERINTERPOLATION OVER GENERAL REGIONS A3973

Proof. In Lemma 3.1, we have proved that ATWA is an identity matrix, and by
(3.3), we have \bfitalpha = ATWf . Then \bfitbeta = [\beta 1, . . . , \beta d]

T is a solution to (3.7) if and only
if

(3.8) 0 \in ATWA\bfitbeta  - ATWf + \partial (\| R\bfitbeta \| 1) = \bfitbeta  - \bfitalpha + \partial (\| R\bfitbeta \| 1) ,

where \partial (\cdot ) denotes the subdifferential. The first-order condition (3.8) is equivalent to

(3.9) 0 \in \beta \ell  - \alpha \ell + \lambda \mu \ell \partial (| \beta \ell | ) \forall \ell = 1, . . . , d,

where

\partial (| \beta \ell | ) =

\left\{     
1 if \beta \ell > 0,

 - 1 if \beta \ell < 0,

\in [ - 1, 1] if \beta \ell = 0.

If we denote by \bfitbeta \ast = [\beta \ast 
1 , . . . , \beta 

\ast 
d ]

T the optimal solution to (3.7), then

\beta \ast 
\ell = \alpha \ell  - \lambda \mu \ell \partial (| \beta \ast 

\ell | ), \ell = 1, . . . , d.

Thus, there are three cases should be considered:
(1) If \alpha \ell > \lambda \mu \ell , then \alpha \ell  - \lambda \mu \ell \partial (| \beta \ast 

\ell | ) > 0; thus, \beta \ast 
\ell > 0, yielding \partial (| \beta \ast 

\ell | ) = 1, and
then \beta \ast 

\ell = (\alpha \ell  - \lambda \mu \ell ) > 0.
(2) If \alpha \ell <  - \lambda \mu \ell , and then \alpha \ell + \lambda \mu \ell \partial (| \beta \ast 

\ell | ) < 0, which leads to \beta \ast 
\ell < 0, giving

\partial (| \beta \ast 
\ell | ) =  - 1, and then \beta \ast 

\ell = (\alpha \ell + \lambda \mu \ell ) < 0.
(3) Consider now  - \lambda \mu \ell \leq \alpha \ell \leq \lambda \mu \ell . On the one hand, \beta \ast 

\ell > 0 leads to \partial (| \beta \ast 
\ell | ) =

1, and then \beta \ell \leq 0; on the other hand, \beta \ast 
\ell < 0 leads to \partial (| \beta \ast 

\ell | ) =  - 1, and
then \beta \ell \geq 0. Two contradictions enforce \beta \ast 

\ell to be 0.
Recall that \alpha \ell = \langle f, p\ell \rangle N for all \ell = 1, . . . , d. With all cases considered, the polynomial
constructed with coefficients \beta \ell = \scrS \lambda \mu \ell 

(\alpha \ell ), \ell = 1, . . . , d, is indeed \scrL \lambda Lf .
There are three important facts of Lasso hyperinterpolation which distinguish it

from hyperinterpolation.

Remark 3.5. Note that \scrS \lambda \mu \ell 
(\alpha \ell ) \not = \alpha \ell . Thus, even though the quadrature rule is

minimal, Lasso hyperinterpolation does not satisfy the classical interpolation property,
i.e., \scrL \lambda Lf(xj) \not = f(xj), 1 \leq j \leq N . But by Lemma 2.4, \scrL Lf(xj) = f(xj), 1 \leq j \leq N .

Remark 3.6. The fact \scrS \lambda \mu \ell 
(\alpha \ell ) \not = \alpha \ell also implies that \scrL \lambda Lp \not = p for all p \in \BbbP L.

Hence, \scrL \lambda L is not a projection operator, as \scrL \lambda L(\scrL \lambda Lf) \not = \scrL \lambda Lf for any nonzero f \in \scrC (\Omega ).
However, by Lemma 2.5, we have \scrL Lp = p, and hence \scrL L(\scrL Lf) = \scrL Lf for all
f \in \scrC (\Omega ).

Remark 3.7. Lasso hyperinterpolation is not invariant under a change of basis.
That is, suppose \{ q1, q2, . . . , qd\} is another basis; due to the existence of the soft

threshold operator, \scrL \lambda Lf cannot be expressed by
\sum d
i,j=1 \scrS \lambda \mu j

\bigl( 
\langle f, qj\rangle N

\bigr) \bigl[ 
Q - 1

\bigr] 
ji
qi,

where Q \in \BbbR d\times d is a matrix with elements [Q]ij = \langle qi, qj\rangle N . However, we have

\scrL Lf =
\sum d
i,j=1 \langle f, qj\rangle N

\bigl[ 
Q - 1

\bigr] 
ji
qi [38].

Lasso hyperinterpolation is also different from filtered hyperinterpolation.

Remark 3.8. Lasso hyperinterpolation processes hyperinterpolation coefficients
via a soft threshold operator which processes them in a discontinuous way; however,
filtered hyperinterpolation processes them in a continuous way.
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3.2. Basis element selection and parameter choice. Basis element selection
ability of \scrL \lambda L stems from the soft threshold operator, which enforces any \langle f, p\ell \rangle N to
be 0 as long as \langle f, p\ell \rangle N \leq \lambda \mu \ell and shrinks the rest by subtracting \lambda \mu \ell from them.
The following proposition states which basis elements would be dismissed.

Proposition 3.9. Under conditions of Theorem 3.4, given \lambda and \{ \mu \ell \} d\ell =1, coef-
ficients corresponding to p\ell which satisfy | \langle f, p\ell \rangle N | \leq \lambda \mu \ell are enforced to be 0.

Proof. Given in the discussion above.

That is, basis elements corresponding to these coefficients would be dismissed,
and the rest are kept in constructing a hyperinterpolation polynomial.

To quantify the basis element selection ability of \scrL \lambda L, we investigate the sparsity
of \bfitbeta , measured by the ``zero norm"" \| \bfitbeta \| 0, which is the number of nonzero entries of
\bfitbeta .

Theorem 3.10. Under conditions of Theorem 3.4, let \bfitbeta be a solution to problem
(3.7).

(1) If \lambda = 0, then \| \bfitbeta \| 0 satisfies \| \bfitbeta \| 0 = \| \bfitalpha \| 0 = \| ATWf\| 0.
(2) If \lambda > 0, then \| \bfitbeta \| 0 satisfies \| \bfitbeta \| 0 \leq \| ATWf\| 0, more precisely,

\| \bfitbeta \| 0 = \| ATWf\| 0  - \# \{ \ell : | \langle f, p\ell \rangle N | \leq \lambda \mu \ell and \langle f, p\ell \rangle N \not = 0\} ,

where \#\{ \cdot \} denotes the cardinal number of the corresponding set.

Proof. If \lambda = 0, then \scrL \lambda Lf reduces to \scrL Lf ; hence, \bfitbeta = \bfitalpha = ATWf , proving
assertion (1). Given nonzero entries of ATWf , as stated in Proposition 3.9, Lasso
hyperinterpolation enforces those \langle f, p\ell \rangle N satisfying | \langle f, p\ell \rangle N | \leq \lambda \mu \ell to be zero.
Hence assertion (2) holds obviously.

Remark 3.11. If we measure the level of relevancy between certain basis element
and the function f by the absolute value of \langle f, p\ell \rangle N , then Theorem 3.10 suggests
that we can determine a baseline of such a level of relevancy and dismiss those basis
elements with lower relevancy by controlling parameters \lambda and \{ \mu \ell \} d\ell =1.

In an extreme case, we could even set large enough \lambda and \{ \mu \ell \} d\ell =1 so that all
coefficients \langle f, p\ell \rangle N are enforced to be 0. However, as we are constructing a polynomial
to approximate some f \in \scrC (\Omega ), this is definitely not the case we desire. Then we have
the rather simple but interesting result, a parameter choice rule for \lambda such that \bfitbeta \not = 0.

Theorem 3.12. Adopt conditions of Theorem 3.4. If \lambda < \| ATWf\| \infty , then \bfitbeta 
obtained by solving (3.7) is not 0 \in \BbbR d.

Proof. Suppose to the contrary that 0 \in \BbbR d is a stationary point of the objective
in (3.7). Then the first-order condition (3.8) with 0 gives ATWf \in \lambda \partial (\| 0\| 1) =
\lambda [ - 1, 1]d, leading to \| ATWf\| \infty \leq \lambda . Hence, its contrapositive also holds: If \lambda <
\| ATWf\| \infty , then \bfitbeta could not be 0.

4. Error analysis. In this section, the theory of Lasso hyperinterpolation is
developed. The denoising ability of \scrL \lambda L is measured by the L2 error bounds. One of
our two main results is that Lasso can reduce the operator norm of \scrL L. The other
main result is that Lasso hyperinterpolation can reduce the error related to noise.
We consider additive noise in this paper; that is, Lasso hyperinterpolation finds an
approximation polynomial to f \in \scrC (\Omega ) with noisy data values f \epsilon (xj) = f(xj) + \epsilon j at
points xj \in \Omega . It is convenient to regard f \epsilon as a continuous function on \Omega , which can
be constructed by some interpolation process from values \{ f \epsilon (xj)\} Nj=1 on \scrX N .
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We first derive L2 error bounds for continuous functions f \in \scrC (\Omega ) with noise-
free and noisy data values, respectively. Then we further discuss the type of noise.
Finally, we consider the relation between additional smoothness of f and obtained
error bounds. Norms of functions and operators used in our analysis are defined below.
For any function g \in \scrC (\Omega ), its uniform norm is defined as \| g\| \infty := sup\bfx \in \Omega | g(x)| , and
for any g \in L2(\Omega ), its L2 norm is defined as \| g\| 2 := (

\int 
\Omega 
| g| 2d\omega )1/2. For any operator

\scrU L : \scrC (\Omega ) \rightarrow L2(\Omega ), its operator norm is defined as

\| \scrU L\| op := sup
g\in \scrC (\Omega ),g \not =0

\| \scrU Lg\| 2
\| g\| \infty 

.

For g \in \scrC (\Omega ), let \varphi \ast \in \BbbP L be the best approximation of g in \BbbP L, that is, EL(g) :=
inf\varphi \in \BbbP L

\| g  - \varphi \| \infty = \| g  - \varphi \ast \| \infty .

4.1. The case of continuous functions. Recall that
\int 
\Omega 
d\omega = V < \infty . We

first state error bounds for \scrL L for comparison.

Proposition 4.1 (Theorem 1 in [41]). Suppose conditions of Lemma 3.1 are as-
sumed. Then

(4.1) \| \scrL Lf\| 2 \leq V 1/2\| f\| \infty 

and

(4.2) \| \scrL Lf  - f\| 2 \leq 2V 1/2EL(f).

Thus, \| \scrL Lf  - f\| 2 \rightarrow 0 as L \rightarrow \infty .

We have the following lemma to describe properties of \scrL \lambda L.
Lemma 4.2. Under conditions of Theorem 3.4,
(1)

\bigl\langle 
f  - \scrL \lambda Lf,\scrL \lambda Lf

\bigr\rangle 
N

= K(f);

(2)
\bigl\langle 
\scrL \lambda Lf,\scrL \lambda Lf

\bigr\rangle 
N

+
\bigl\langle 
f  - \scrL \lambda Lf, f  - \scrL \lambda Lf

\bigr\rangle 
N

= \langle f, f\rangle N  - 2K(f), and thus K(f)
satisfies K(f) \leq \langle f, f\rangle N /2;

(3)
\bigl\langle 
\scrL \lambda Lf,\scrL \lambda Lf

\bigr\rangle 
N

\leq \langle f, f\rangle N  - 2K(f),
where

K(f) =

d\sum 
\ell =1

\Bigl( 
\scrS \lambda \mu \ell 

(\alpha \ell )\alpha \ell  - (\scrS \lambda \mu \ell 
(\alpha \ell ))

2
\Bigr) 
\geq 0

and K(f) = 0 if \lambda = 0 or if \lambda is so large that | \alpha \ell | \leq \lambda \mu \ell for all \ell . Here K(f) is a

constant relying on f by noting that \alpha \ell =
\sum N
j=1 wjp\ell (xj)f(xj).

Proof. The positiveness of K(f) stems from | \alpha \ell | \geq | \scrS \lambda \mu \ell 
(\alpha \ell )| and from the fact

that they have the same signs if \scrS \lambda \mu \ell 
(\alpha \ell ) \not = 0. When \lambda = 0, we have \scrS \lambda \mu \ell 

(\alpha \ell ) = \alpha \ell ,
and when \lambda is so large that | \alpha \ell | \leq \lambda \mu \ell , we have \scrS \lambda \mu \ell 

(\alpha \ell ) = 0; both make K(f) be 0.
(1) This follows from

\bigl\langle 
f  - \scrL \lambda Lf,\scrL \lambda Lf

\bigr\rangle 
N

=

d\sum 
k=1

\scrS \lambda \mu k
(\alpha k)

\Biggl\langle 
f  - 

d\sum 
\ell =1

\scrS \lambda \mu \ell 
(\alpha \ell )p\ell , pk

\Biggr\rangle 
N

and\Biggl\langle 
f  - 

d\sum 
\ell =1

\scrS \lambda \mu \ell 
(\alpha \ell )p\ell , pk

\Biggr\rangle 
N

= \langle f, pk\rangle N  - 

\Biggl\langle 
d\sum 
\ell =1

\scrS \lambda \mu \ell 
(\alpha \ell )p\ell , pk

\Biggr\rangle 
N

= \alpha k  - \scrS \lambda \mu k
(\alpha k).
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(2) It follows from (1) that
\bigl\langle 
\scrL \lambda Lf,\scrL \lambda Lf

\bigr\rangle 
N

=
\bigl\langle 
f,\scrL \lambda Lf

\bigr\rangle 
N

 - K(f), and the second
term of the left-hand side can be written as\bigl\langle 

f  - \scrL \lambda Lf, f  - \scrL \lambda Lf
\bigr\rangle 
N

= \langle f, f\rangle N  - 2
\bigl\langle 
f,\scrL \lambda Lf

\bigr\rangle 
N
+
\bigl\langle 
\scrL \lambda Lf,\scrL \lambda Lf

\bigr\rangle 
N
.

Summing them up and using (1) again leads to the equality. It follows from \langle g, g\rangle N \geq 0
for any g \in \scrC (\Omega ) that \langle f, f\rangle N  - 2K(f) \geq 0; thus, we obtain the upper bound of K(f).

(3) This is immediately from (2) and the positiveness of
\bigl\langle 
f  - \scrL \lambda Lf, f  - \scrL \lambda Lf

\bigr\rangle 
N
.

Remark 4.3. K(f) = 0 implies that either \lambda = 0 or \lambda is so large that \scrL \lambda Lf = 0.
However, Definition 3.3 of Lasso hyperinterpolation requires \lambda > 0, and the parameter
choice rule for \lambda described in Theorem 3.12 prevents \scrL \lambda Lf from being 0. Thus, K(f) >
0 always holds if \lambda is chosen appropriately with respect to Theorem 3.12.

In a noise-free case, we show that \scrL \lambda L can reduce the stability estimation (4.1) and
reduce the factor 2 in the error estimation (4.2) of \scrL L, but it introduces an additional
term into the error bound which we call an regularization error. The term K(f) in
Lemma 4.2 will be used in our estimation.

Theorem 4.4. Adopt conditions of Theorem 3.12. Then there exists \tau 1 < 1,
which relies on f and is inversely related to K(f) such that

(4.3) \| \scrL \lambda Lf\| 2 \leq \tau 1V
1/2\| f\| \infty ,

where V =
\int 
\Omega 
d\omega , and there exists \tau 2 < 1, which relies on f and is inversely related

to K(f  - \varphi \ast ) such that

(4.4) \| \scrL \lambda Lf  - f\| 2 \leq (1 + \tau 2)V
1/2EL(f) + \| \varphi \ast  - \scrL \lambda L\varphi \ast \| 2,

where \varphi \ast is the best approximation of f in \BbbP L over \Omega .

Proof. Inequality (4.3) follows from\bigm\| \bigm\| \scrL \lambda Lf\bigm\| \bigm\| 22 =
\bigl\langle 
\scrL \lambda Lf,\scrL \lambda Lf

\bigr\rangle 
=
\bigl\langle 
\scrL \lambda Lf,\scrL \lambda Lf

\bigr\rangle 
N

\leq \langle f, f\rangle N  - 2K(f)

=

N\sum 
j=1

wjf(xj)
2  - 2K(f) \leq 

N\sum 
j=1

wj\| f\| 2\infty  - 2K(f) = V \| f\| 2\infty  - 2K(f),

where in the second equation, we use the fact \scrL \lambda Lf \in \BbbP L, and the next inequality is
due to Lemma 4.2(3). As K(f) > 0, there exists \tau 1 = \tau 1(K(f)) < 1, which is inversely
related to K(f) such that\sqrt{} 

V \| f\| 2\infty  - 2K(f) = \tau 1V
1/2\| f\| \infty .

Then, for any polynomial \varphi \in \BbbP L,

\| \scrL \lambda Lf  - f\| 2 = \| \scrL \lambda L(f  - \varphi ) - (f  - \varphi ) - (\varphi  - \scrL \lambda L\varphi )\| 2
\leq \| \scrL \lambda L(f  - \varphi )\| 2 + \| f  - \varphi \| 2 + \| \varphi  - \scrL \lambda L\varphi \| 2.

Since the inequality holds for arbitrary \varphi \in \BbbP L, we let \varphi = \varphi \ast . Then there exists
\tau 2 = \tau 2(K(f  - \varphi \ast )) < 1, which is inversely related to K(f  - \varphi \ast ) such that

\| \scrL \lambda Lf  - f\| 2 \leq \tau 2V
1/2\| f  - \varphi \ast \| \infty + V 1/2\| f  - \varphi \ast \| \infty + \| \varphi \ast  - \scrL \lambda L\varphi \ast \| 2,

where the second term on the right side is due to the Cauchy--Schwarz inequality,
which ensures \| g\| 2 =

\sqrt{} 
\langle g, g\rangle \leq \| g\| \infty 

\sqrt{} 
\langle 1, 1\rangle = V 1/2\| g\| \infty for all g \in \scrC (\Omega ). Hence,

we obtain the error bound (4.4).
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Inequality (4.3) gives \| \scrL \lambda L\| op \leq \tau 1V
1/2, showing the norm of \scrL \lambda L is less than that

of hyperinterpolation \scrL L. For the error estimation (4.4), passing to the limit of L
gives the limit case

lim
L\rightarrow \infty 

\| \scrL \lambda Lf  - f\| 2 \leq lim
L\rightarrow \infty 

\| \varphi \ast  - \scrL \lambda L\varphi \ast \| 2 \not = 0

due to the fact that \scrL \lambda L\varphi \not = \varphi for all \varphi \in \BbbP L. Only when \lambda \rightarrow 0 can we have
limL\rightarrow \infty \| \varphi \ast  - \scrL \lambda L\varphi \ast \| 2 = 0 because \scrL L\varphi \ast = \varphi \ast , suggested by Lemma 2.5.

Remark 4.5. Comparing with the stability result (4.1) and the error bound (4.2)
of \scrL L, it is shown that Lasso hyperinterpolation can reduce both of them, but an
additional regularization error \| \varphi \ast  - \scrL \lambda L\varphi \ast \| 2 is introduced in a natural manner. In
general, we do not recommend the use of Lasso in the absence of noise. However, if
the data values are noisy, then \scrL \lambda L will play an important part in reducing noise.

The following theorem describes the denoising ability of \scrL \lambda L.
Theorem 4.6. Adopt conditions of Theorem 3.12. Assume f \epsilon \in \scrC (\Omega ) is a noisy

version of f , and let \scrL \lambda Lf \epsilon \in \BbbP L be defined by (3.6). Then there exists \tau 3 < 1, which
relies on f and f \epsilon and is inversely related to K(f \epsilon  - \varphi \ast ) such that

(4.5) \| \scrL \lambda Lf \epsilon  - f\| 2 \leq \tau 3V
1/2\| f  - f \epsilon \| \infty + (1 + \tau 3)V

1/2EL(f) + \| \varphi \ast  - \scrL \lambda L\varphi \ast \| 2,

where V =
\int 
\Omega 
d\omega and \varphi \ast is the best approximation of f in \BbbP L over \Omega .

Proof. For any polynomial \varphi \in \BbbP L, we have

\| \scrL \lambda Lf \epsilon  - f\| 2 = \| \scrL \lambda L(f \epsilon  - \varphi ) - (f  - \varphi ) - (\varphi  - \scrL \lambda L\varphi )\| 2
\leq \| \scrL \lambda L(f \epsilon  - \varphi )\| 2 + \| f  - \varphi \| 2 + \| \varphi  - \scrL \lambda L\varphi \| 2.

Then by Theorem 4.4, letting \varphi = \varphi \ast gives

\| \scrL \lambda Lf \epsilon  - f\| 2 \leq \tau 3V
1/2\| f \epsilon  - \varphi \ast \| \infty + V 1/2\| f  - \varphi \ast \| \infty + \| \varphi \ast  - \scrL \lambda L\varphi \ast \| 2,

where \tau 3 < 1 is inversely related to K(f \epsilon  - \varphi \ast ). Estimating \| f \epsilon  - \varphi \ast \| \infty by \| f \epsilon  - 
\varphi \ast \| \infty \leq \| f \epsilon  - f\| \infty + \| f  - \varphi \ast \| \infty gives (4.5).

Remark 4.7. If Lasso is not incorporated, using the stability result (4.1) of \scrL L
gives the following estimation, which describes how \scrL L handles noisy functions:

(4.6) \| \scrL Lf \epsilon  - f\| 2 \leq V 1/2\| f  - f \epsilon \| \infty + 2V 1/2EL(f).

This enlarges the part \tau 3V
1/2\| f  - f \epsilon \| \infty + (1 + \tau 3)V

1/2EL(f) in (4.5) but vanishes
the regularization error. In principle, there should be a trade-off choice strategy for
\lambda , and in practice, when the level of noise is of a significant scale, denoising is the top
priority, and the regularization error now has little to contribute to the total error
bound.

4.2. A discussion on noise. We have obtained error bounds of \scrL \lambda L when f \in 
\scrC (\Omega ), and we now continue to discuss the term \| f  - f \epsilon \| \infty with respect to different
kinds of noise.

Let \bfitepsilon = [\epsilon 1, \epsilon 2, . . . , \epsilon N ]T \in \BbbR N be a vector of noise added onto \{ f(xj)\} Nj=1, where
\| \bfitepsilon \| \infty = maxj | \epsilon j | . It is natural to assume that \| f  - f \epsilon \| \infty = \| \bfitepsilon \| \infty , which means
that we adopt the deterministic noise model and allow the worst noise level to be
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A3978 CONGPEI AN AND HAO-NING WU

at any point of \scrX N . This assumption was suggested in [33], which simplifies the
estimation of \| f  - f \epsilon \| \infty and provides a possible way to study different types of noise
in sampling f \epsilon (xj). With the randomness of \bfitepsilon , we can establish error estimations of
\scrL \lambda L in the form of mathematical expectations in which \BbbE (\| f  - f \epsilon \| \infty ) is transformed
into \BbbE (\| \bfitepsilon \| \infty ) = \BbbE (maxj | \epsilon j | ). If the distribution of noise is known, then the term
\BbbE (maxj | \epsilon j | ) can be estimated analytically. In this paper, for example, if we let \epsilon j
be a sub-Gaussian random variable [45, section 2.5] which is equipped with a sub-
Gaussian norm

\| \epsilon j\| \psi 2
:= inf\{ T > 0 : \BbbE (exp(\epsilon 2j/T 2) \leq 2)\} .

Then \BbbE (\| \bfitepsilon \| \infty ) can be estimated by the following lemma.

Lemma 4.8 ([45, section 2.5.2]). If \epsilon 1, . . . , \epsilon N are a sequence of sub-Gaussian
random variables which are not necessarily independent, then

(4.7) \BbbE (\| \bfitepsilon \| \infty ) \leq cG
\sqrt{} 
logN,

where G = maxj \| \epsilon j\| \psi 2 and c > 0 is a generic constant.

The family of sub-Gaussian random variables contains many classical examples
[45]. For instance, if \epsilon j \in \scrN (0, \sigma 2

j ) is a Gaussian random variable with mean zero and

variance \sigma 2
j , we have \| \epsilon j\| \psi 2 \leq c\sigma j , and hence

\BbbE (\| \bfitepsilon \| \infty ) \leq c max
j=1,...,N

\sigma j
\sqrt{} 
logN,

which describes a wide range of Gaussian noise. If \epsilon j is a single impulse, that is, \epsilon j = aj
with probability bj and \epsilon j = 0 with probability 1  - bj , then \| \epsilon j\| \psi 2 = aj/

\sqrt{} 
ln(2/bj),

and hence

\BbbE (\| \bfitepsilon \| \infty ) \leq c max
j=1,...,N

aj\sqrt{} 
ln(2/bj)

\sqrt{} 
logN.

One can also obtain similar bounds if \epsilon j is a multiple impulse by calculating the sub-
Gaussian norm of \epsilon j . These bounds cover the case of impulse noise (also known as
salt-and-pepper noise in imaging science). More generally, as long as \epsilon j is a bounded

random variable with | \epsilon j | \leq dj , we can obtain \| \epsilon j\| \psi 2 \leq dj/
\surd 
ln 2, and hence

\BbbE (\| \bfitepsilon \| \infty ) \leq c max
j=1,...,N

dj\surd 
ln 2

\sqrt{} 
logN.

Moreover, we can note that the estimation (4.7) is also valid for mixed noise as long
as \epsilon 1, . . . , \epsilon N are all sub-Gaussian random variables and G = maxj \| \epsilon j\| \psi 2

.

4.3. The case of smooth functions. We now set up particular estimations
on terms EL(f) and \| \varphi \ast  - \scrL \lambda L\varphi \ast \| 2 if f is assumed to be blessed with additional
smoothness. To measure the smoothness, it is convenient to introduce a H\"older space

\scrC k,\zeta (\Omega ) :=
\bigl\{ 
g \in \scrC k(\Omega ) : Dmg is \zeta  - H\"older continuous \forall m with | m| = k

\bigr\} 
such that f \in \scrC k,\zeta (\Omega ), where D is a differential operator and m ranges over multi-
indices; f could also be considered in a Sobolev space Hk+\zeta +s/2, which is continuously
embedded in \scrC k,\zeta [8]. Note that it is not necessary to assume any additional smooth-
ness on f \epsilon , which shall still belong to \scrC (\Omega ). Then the term EL(f) in both bounds (4.4)
and (4.5) can be quantified by k with the aid of some Jackson-type theorems [5, 35, 36].
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Generally speaking, for f \in \scrC k,\zeta (\Omega ) with 0 < \zeta \leq 1, there exists C(k, \zeta , s) > 0, which
depends only on k, \zeta , and s such that [35]

(4.8) EL(f) \leq C(k, \zeta , s)\| f\| k,\zeta L - k - \zeta = \scrO (L - k - \zeta ),

where

\| f\| k,\zeta =
\sum 

| m| \leq k

\| Dmf\| \infty +
\sum 

| m| =k

sup
\bfx \not =\bfy 

| f(x) - f(y)| 
\| x - y\| \zeta 2

and m ranges over multi-indices. To obtain (4.8), it is assumed that the kth derivative
of f satisfies a \zeta -H\"older condition. This modulus was also generalized in [35], but the
convergence rate \scrO (L - k - \zeta ) is not affected. In particular, if f \in \scrC k([ - 1, 1]) and if
| fk(x1) - f (k)(x2)| \leq Mk| x1 - x2| \zeta for some Mk > 0 and \zeta \in (0, 1], Jackson's theorem
[5, Theorem 3.7.2] asserts EL(f) = max - 1\leq x\leq 1 | f(x)  - \varphi \ast (x)| \leq C(k, \zeta )MkL

 - k - \zeta 

for some C(k, \zeta ) > 0, which depends only on k and \zeta (as s = 1). If \Omega is a cube or
a multidimensional torus, one can also find similar Jackson-type estimations in [31,
section 6.4].

If \Omega is blessed with some additional geometric properties, then the requirement
f \in \scrC k,\zeta (\Omega ) may be relaxed to f \in \scrC k(\Omega ), and the bound for EL(f) becomes

(4.9) EL(f) \leq \scrO (L - k)

correspondingly. For example, if \Omega is a homogeneous submanifold (including spheres
and projective spaces), then there exists a polynomial such that the L2 distance
from f to this polynomial is bounded by \scrO (L - k); hence, the bound (4.9) is valid
for EL(f) [36]. In particular, if f \in \scrC k(\BbbS s - 1), where \BbbS s - 1 \subset \BbbR s is a unit (s  - 1)-
sphere, a Jackson-type theorem [36, Theorem 3.3] asserts that EL(f) satisfies (4.9).
In addition, though the closed unit s-ball \BbbB s \subset \BbbR s is not a homogeneous submanifold,
a Jackson-type theorem can be also derived based on results on the unit sphere [36,
Theorem 3.4], which states that the bound (4.9) is also valid for f \in \scrC k(\BbbB s). For
detailed mathematical derivation and constants used in \scrO (L - k), we refer the reader
to [36].

Remark 4.9. In this paper, EL(f) is defined in the sense of uniform norm. As
we mentioned above, f can be considered in some Sobolev spaces Ht(\Omega ) (or more
generally W t,p(\Omega )) continuously embedded in \scrC k,\zeta (\Omega ). Thus, in the literature of
hyperinterpolation (mainly on spheres), errors and EL(f) were also studied in the
Ht(\Omega ) sense of Sobolev norm \| \cdot \| Ht(\Omega ) with EL(f) := infp\in \BbbP L

\| f  - p\| Ht(\Omega ). We refer
the reader to [13, 23] for details about this topic.

Finally, we examine and estimate the regularization error \| \varphi \ast  - \scrL \lambda L\varphi \ast \| 2 with
f \in \scrC k,\zeta (\Omega ), 0 < \zeta \leq 1. No matter when f \in \scrC (\Omega ) or \scrC k,\zeta (\Omega ), this term will not
vanish unless \lambda \rightarrow 0 and f = f \epsilon , which is a fact verified in many previous works;
see, e.g., [29, 33]. This term essentially depends on f through the medium of its best

uniform approximation polynomial \varphi \ast . If \varphi \ast is constructed as \varphi \ast =
\sum d
\ell =1 c\ell p\ell , then

corresponding coefficients of \scrL \lambda L\varphi \ast are c\ell  - \lambda \mu \ell if c\ell > \lambda \mu \ell , c\ell +\lambda \mu \ell if c\ell <  - \lambda \mu \ell , and
0 if | c\ell | \leq \lambda \mu \ell . Thus, with the aid of Parseval's identity in \BbbP L, we have

(4.10) \| \varphi \ast  - \scrL \lambda L\varphi \ast \| 2 =

\left(  d\sum 
\ell =1, | c\ell | \leq \lambda \mu \ell 

| c\ell | 2 +
d\sum 

\ell =1, | c\ell | >\lambda \mu \ell 

| \lambda \mu \ell | 2
\right)  1/2

.
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Here comes an immediate but rough bound \| \varphi \ast  - \scrL \lambda L\varphi \ast \| 2 \leq (
\sum d
\ell =1 | c\ell | 2)1/2 = \| \varphi \ast \| 2,

but we are going to derive a sharper bound for it in consideration of function smooth-
ness and regularization parameters.

Lemma 4.10. Adopt conditions of Theorem 3.12, and let f \in \scrC k,\zeta (\Omega ) with 0 <

\zeta \leq 1. Let \varphi \ast =
\sum d
\ell =1 c\ell p\ell \in \BbbP L be the best approximation of f in the sense of

uniform norm, and let \scrL \lambda L\varphi \ast \in \BbbP L be defined by (3.6). Then

\| \varphi \ast  - \scrL \lambda L\varphi \ast \| 2 \leq 
\Bigl[ 
V
\bigl( 
\| f\| \infty + C\| f\| k,\zeta L - k - \zeta \bigr) 2  - \chi 

\Bigr] 1/2
,

where V =
\int 
\Omega 
d\omega ; C := C(k, \zeta , s) is some constant which depends only on k, \zeta , and

s; and

\chi :=

d\sum 
\ell =1, | c\ell | >\lambda \mu \ell 

\bigl( 
| c\ell | 2  - | \lambda \mu \ell | 2

\bigr) 
.

Proof. Comparing with the rough bound \| \varphi \ast  - \scrL \lambda L\varphi \ast \| 2 \leq \| \varphi \ast \| 2, we exactly have

\| \varphi \ast  - \scrL \lambda L\varphi \ast \| 22 = \| \varphi \ast \| 22  - \chi .

Since \| \varphi \ast \| 22 \leq V \| \varphi \ast \| 2\infty \leq V
\bigl( 
\| f\| \infty + C\| f\| k,\zeta L - k - \zeta \bigr) 2, the lemma is proved.

Remark 4.11. Lemma 4.10 decomposes \| \varphi \ast  - \scrL \lambda L\varphi \ast \| 22 into two part. One depends
only on f itself, and the other is related to regularization settings. If f is smoother,
characterized by a larger k, then \| \varphi \ast  - \scrL \lambda L\varphi \ast \| 2 becomes smaller. But \| \varphi \ast  - \scrL \lambda L\varphi \ast \| 2
is inversely related to \lambda and \mu \ell , which are inversely related to \chi .

Consequently, error bounds (4.4) and (4.5) can be improved as follows.

Theorem 4.12. Adopt conditions of Theorem 3.12 and Lemma 4.8. Let f \in 
\scrC k,\zeta (\Omega ) with 0 < \zeta \leq 1, and let f \epsilon \in \scrC (\Omega ) be a noisy version of f . Then

\| \scrL \lambda Lf  - f\| 2 \leq 
\Bigl[ 
(1 + \tau 2)V

1/2C\| f\| k,\zeta 
\Bigr] 
L - k - \zeta 

+
\Bigl[ 
V
\bigl( 
\| f\| \infty + C\| f\| k,\zeta L - k - \zeta \bigr) 2  - \chi 

\Bigr] 1/2
and

\BbbE (\| \scrL \lambda Lf \epsilon  - f\| 2) \leq c\tau 3V
1/2G

\sqrt{} 
logN +

\Bigl[ 
(1 + \tau 3)V

1/2C\| f\| k,\zeta 
\Bigr] 
L - k - \zeta 

+
\Bigl[ 
V
\bigl( 
\| f\| \infty + C\| f\| k,\zeta L - k - \zeta \bigr) 2  - \chi 

\Bigr] 1/2
,

(4.11)

where c is a generic constant; V =
\int 
\Omega 
d\omega ; C := C(k, \zeta , s) > 0 depends on k, \zeta , and

s; \chi :=
\sum d
\ell =1, | c\ell | >\lambda \mu \ell 

\bigl( 
| c\ell | 2  - | \lambda \mu \ell | 2

\bigr) 
; G could be determined analytically if the type

of noise is known; \tau 2 < 1 depends on f and is inversely related to K(f  - \varphi \ast ); and
\tau 3 < 1 depends on f and f \epsilon and is inversely related to K(f \epsilon  - \varphi \ast ).

Proof. Based on error decompositions in (4.4) and (4.5), both improved error
bounds can be obtained by using Lemmas 4.8 and 4.10 and estimation (4.8).

Remark 4.13. Our error bound (4.11) consists of three terms. The first term is
related to the level of noise, which will tend to zero if f \epsilon \rightarrow f ; the second term is an
essential part in almost every approximation scheme, converging to zero as L \rightarrow \infty ;
and the third term depends on our regularization settings, which cannot converge.
These findings on convergence and misconvergence also apply for (4.5) when f \in \scrC (\Omega ).
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5. Examples. We consider four concrete examples of \scrL \lambda L with certain quadra-
ture rules: on the interval [ - 1, 1] \subset \BbbR , on the unit disc \{ (x1, x2) \in \BbbR 2 : x2

1+x2
2 \leq 1\} ,

on the unit sphere \BbbS 2 := \{ x = (x, y, z)T \in \BbbR 3 : x2 + y2 + z2 = 1\} \subset \BbbR 3, and in
the unit cube [ - 1, 1]3 \subset \BbbR 3 as well. For each example, we state the quadrature rule
and the value of V ; thus, error bounds of \scrL \lambda L can be obtained immediately. We will
also compare \scrL \lambda L with filtered hyperinterpolation \scrF L (cf. section 2.3) and Tikhonov
regularized least squares approximation \scrT L, which can be obtained by using regular-
ization term \| \bfitalpha \| 22/2 rather than \| \bfitalpha \| 1 in (3.4). We refer the reader to [2, 3, 25, 33]
for this topic. Except for examples on the sphere (explanation will be made from
the context), \scrT L adopts the same regularization parameters as \scrL \lambda L in our numerical
experiments.

5.1. The interval. We take \Omega = [ - 1, 1] with d\omega = \omega (x)dx, where \omega (x) \geq 0
is a weight function on [ - 1, 1] and different \omega (x) indicates different value of V =\int 1

 - 1
\omega (x)dx. In this case, \BbbP L is a linear space of polynomials of degree at most L on

the interval [ - 1, 1], and hence d = L+ 1.
Fix L as the degree of Lasso hyperinterpolation polynomial, and let \{ p\ell : 0 \leq 

\ell \leq L\} be a family of normalized orthogonal polynomials on [ - 1, 1] with respect to
a weight function \omega (x) and p\ell be of degree \ell [20]. For N \geq L + 1, let \{ xj\} Nj=1 and

\{ wj\} Nj=1 be Gauss quadrature points and Gauss quadrature weights, respectively. Due
to the exactness of Gauss quadrature [44, 52], it is ensured that

N\sum 
j=1

wjg(xj) =

\int 1

 - 1

\omega (x)g(x)dx \forall g \in \BbbP 2N - 1.

Here we take Gauss quadrature as an example, and its variants Gauss--Lobatto and
Gauss--Radau quadrature may also be considered [20]. Then the Lasso hyperinterpo-
lation (3.6) becomes

(5.1) \scrL \lambda Lf :=

L\sum 
\ell =0

\scrS \lambda \mu \ell 

\left(  N\sum 
j=1

wjf(xj)p\ell (xj)

\right)  p\ell .

When \lambda \rightarrow 0 and f \epsilon = f , our error bounds of \scrL \lambda L reduce into \| \scrL Lf  - f\| 2 \leq 
2V 1/2EL(f), which quantifies the error of interpolation if N = L + 1, known as the
Erd\H os--Tur\'an bound [17], and is valid for hyperinterpolation if N > L+ 1, proved by
Sloan [38].

Figure 1 provides a concrete example on the approximation of function f(x) =
exp( - x2) in the presence of Gaussian noise \epsilon j \in \scrN (0, \sigma 2) with \sigma = 0.15 via \scrT L, \scrF L,
and \scrL \lambda L. We set N = 300, L = 250, \lambda = 10 - 1, and all \mu \ell to be 1, and we adopt
normalized Legendre polynomials to approximate f in this experiment, which reports
excellent denoising ability of \scrL \lambda L.

Table 1 reports the L2 approximation errors of the same function but with respect
to different \sigma , which describes the level of noise, and different \lambda . In addition, the
sparsity of Lasso hyperinterpolation coefficients is also reported. In this experiment,
there should be 251 coefficients in constructing \scrT 250f , \scrF 250f , and \scrL \lambda 250f . For each
setting of \lambda and \sigma , we test five times and report the average values. It is shown in this
table that \scrL \lambda L enjoys the leading position in removing Gaussian noise on the interval.
For a fixed level of noise, an appropriate \lambda = 10 - 1 leads to \| \scrL \lambda Lf \epsilon  - f\| 2 \approx 0.0731,
which is approximately one-third of the L2 errors of \scrT L and \scrF L, respectively. For a
fixed \lambda , unlike \scrT L and \scrF L, the Lasso hyperinterpolation \scrL \lambda L shows robustness with
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Fig. 1. Approximation results of f(x) = exp( - x2) over [ - 1, 1] via \scrT L, \scrF L, and \scrL \lambda 
L.

Table 1
Approximation errors and the sparsity of Lasso hyperinterpolation coefficients of f(x) =

exp( - x2) over [ - 1, 1] via \scrT L, \scrF L, and \scrL \lambda 
L, with different values of \lambda and different standard deriva-

tion \sigma of Gaussian noise added on.

\sigma = 0.2, and \lambda takes \lambda = 10 - 1, and \sigma takes
10 - 0.8 10 - 1 10 - 1.5 10 - 2 0.1 0.15 0.2 0.25

Tikhonov 0.2645 0.2369 0.2431 0.2450 0.1462 0.1831 0.2440 0.2867
Filtered 0.2097 0.2161 0.2202 0.2150 0.1057 0.1536 0.2236 0.2663
Lasso 0.1454 0.0731 0.1114 0.2017 0.0811 0.0733 0.0802 0.0890
\| \bfitbeta \| 0 2 2.8 89.8 192.6 2 2.2 2.8 6.2

respect to the increase in the level of noise. For the sparsity of \bfitbeta , it is illustrated in
this table that decreasing \lambda and increasing the level of noise both increase the number
of nonzero entries of \bfitbeta .

5.2. The disc. We then consider \Omega = \{ x \in \BbbR 2 : x = (x1, x2) and x2
1 + x2

2 \leq 1\} ,
which is a unit disc on \BbbR 2, with d\omega = (1/\pi )dx. Thus,

V =

\int 
\Omega 

d\omega =
1

\pi 

\int 1

0

\int 2\pi 

0

1rd\theta dr = 1.

In this case, \BbbP L := \{ 
\sum L
j=0

\sum j
k=0 bjkx

k
1x

j - k
2 : bjk \in \BbbR \} is a linear space of polynomials

of degree at most L on the unit disc, and hence d =
\bigl( 
L+2
2

\bigr) 
= (L+ 2)(L+ 1)/2.

Fix L as the degree of Lasso hyperinterpolation polynomial, and let \{ \Lambda \ell : 1 \leq 
\ell \leq (L+ 2)(L+ 1)/2\} be a family of ridge polynomials on the unit disc, which were
introduced by Logan and Shepp [30]. If we write x = (r, \theta ), where r and \theta are the
radius and azimuthal directions of x, respectively, then the discrete inner product
(2.4) can be expressed as

\langle v, z\rangle N :=
1

\pi 

N\sum 
j=0

2N\sum 
m=0

v

\biggl( 
rj ,

2\pi m

2N + 1

\biggr) 
z

\biggl( 
rj ,

2\pi m

2N + 1

\biggr) 
wj

2\pi 

2N + 1
rj

=

N\sum 
j=0

2N\sum 
m=0

v

\biggl( 
rj ,

2\pi m

2N + 1

\biggr) 
z

\biggl( 
rj ,

2\pi m

2N + 1

\biggr) 
wj

2

2N + 1
rj ,
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Fig. 2. Approximation results of f(x1, x2) = (1 - (x2
1 + x2

2)) exp(x1 cos(x2)) over the unit disc
via \scrT L, \scrF L, and \scrL \lambda 

L.

where we use the trapezoidal rule for the azimuthal direction and the Gauss--Legendre
quadrature rule over [0, 1] for the radial direction; that is, \{ rj\} Nj=0 and \{ wj\} Nj=0 are
Gauss--Legendre quadrature points and weights, respectively. Such an inner product
was constructed in [22] and is exact for all v, z \in \BbbP N . Hence,

N\sum 
j=0

2N\sum 
m=0

g

\biggl( 
rj ,

2\pi m

2N + 1

\biggr) 
wj

2

2N + 1
rj =

1

\pi 

\int 1

0

\int 2\pi 

0

g(r, \theta )rd\theta dr for all g \in \BbbP 2N .

Then the Lasso hyperinterpolation (3.6) becomes

\scrL \lambda Lf :=

L\sum 
\ell =0

\scrS \lambda \mu \ell 

\left(  N\sum 
j=0

2N\sum 
m=0

f

\biggl( 
rj ,

2\pi m

2N + 1

\biggr) 
\Lambda \ell 

\biggl( 
rj ,

2\pi m

2N + 1

\biggr) 
wj

2

2N + 1
rj

\right)  \Lambda \ell .

Figure 2 displays the approximation results of function f(x1, x2) = (1  - (x2
1 +

x2
2)) exp(x1 cos(x2)) contaminated by some single-impulse noise via \scrT L, \scrF L, and

\scrL \lambda L. This kind of noise \epsilon j in our experiments takes uniformly distributed random
values in [ - a, a] with probability 1/2, which is generated by MATLAB command
a*(1-2*rand(1))*binornd(1,0.5). In Figure 2, we let a = 3.5. This function is
the true solution of a nonlinear Poisson equation as seen in [6], which was solved by
hyperinterpolation-based spectral methods in [22]. We set N = 135 (136 quadrature
points), L = 16, \lambda = 10 - 1.5, and all \mu \ell to be 1 in this experiment, which also reports
exciting denoising ability of \scrL \lambda L. Errors near the boundary of the disc are in good
agreement with the theoretical analysis in [22, section 4] that for a given L, pointwise
errors near the boundary are larger than those around the center of the disc.

Table 2 reports the L2 approximation errors of the same function but with respect
to different values of \lambda and different level a of noise. In addition, the sparsity of Lasso
hyperinterpolation coefficients is also reported. In this experiment, there should be
153 coefficients in constructing \scrT 16f , \scrF 16f , and \scrL \lambda 16f . For each setting of \lambda and a,
we test five times and report the average values. Table 2 asserts the denoising ability
of \scrL \lambda L with respect to impulse noise and the robustness of \scrL \lambda L with respect to the
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Table 2
Approximation errors and the sparsity of Lasso hyperinterpolation coefficients of f(x1, x2) =

(1 - (x2
1 + x2

2)) exp(x1 cos(x2)) over a unit disc via \scrT L, \scrF L, and \scrL \lambda 
L, with different values of \lambda and

different values of a used in generating single-impulse noise.

a = 3.5, and \lambda takes \lambda = 10 - 1.2, and a takes
10 - 1.5 10 - 1.3 10 - 1.1 10 - 0.9 2.5 3 3.5 4

Tikhonov 0.4424 0.4296 0.3899 0.3616 0.4133 0.4200 0.4101 0.4088
Filtered 0.4840 0.4948 0.4864 0.5080 0.4942 0.5019 0.4887 0.4880
Lasso 0.4234 0.3947 0.3455 0.2922 0.3745 0.3832 0.3694 0.3669
\| \bfitbeta \| 0 10.4 8 7.6 5.4 8 8 8 8

increasing level of noise. We also note that increasing the level of impulse noise may
not increase the number of nonzero entries of \bfitbeta as significantly as the case of intervals.

5.3. The sphere. We then take \Omega = \BbbS 2 \subset \BbbR 3 with d\omega = \omega (x)dx, where \omega (x) is
an area measure on \BbbS 2. Since V =

\int 
\BbbS 2 \omega (x)dx denotes the surface area of \BbbS 2, we have

V = 4\pi .

Here \BbbP L(\Omega ) := \BbbP L(\BbbS 2) is the space of spherical polynomials of degree at most L. Let
the basis be a set of orthonormal spherical harmonics [32] \{ Y\ell ,k : \ell = 0, 1 . . . , L, k =
1, . . . , 2\ell +1\} , and the dimension of \BbbP L(\BbbS 2) is d = dim\BbbP L = (L+1)2. There are many
quadrature rules [1, 4, 51] satisfying

(5.2)

N\sum 
j=1

wjg(xj) =

\int 
\BbbS 2
gd\omega \forall g \in \BbbP 2L

for a spherical polynomial g. Then the Lasso hyperinterpolation (3.6) becomes

(5.3) \scrL \lambda Lf :=

L\sum 
\ell =0

2\ell +1\sum 
k=1

\scrS \lambda \mu \ell 

\left(  N\sum 
j=1

wjf(xj)Y\ell ,k(xj)

\right)  Y\ell ,k.

When \lambda \rightarrow 0 and f \epsilon = f , our error bounds of \scrL \lambda L reduce into \| \scrL Lf(x)  - f(x)\| 2 \leq 
4\pi 1/2EL(f), which coincides with the bound given by Sloan [38].

We provide a concrete quadrature for (5.2), spherical t-design, which was intro-
duced by Delsarte, Goethals, and Seidel [15] in 1977. A point set \{ x1, . . . ,xN\} \subset \BbbS 2
is a spherical t-design if it satisfies

(5.4)
1

N

N\sum 
j=1

p(xj) =
1

4\pi 

\int 
\BbbS 2
p(x)d\omega (x) \forall p \in \BbbP t.

In other words, it is a set of points on the sphere such that an equal-weight quadrature
rule at these points integrates all (spherical) polynomials up to degree t exactly.

Figure 3 displays the approximation results via \scrT L, \scrF L, and \scrL \lambda L of a function
f defined below, perturbed by mixed Gaussian noise with \sigma = 0.015 and single-
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LASSO HYPERINTERPOLATION OVER GENERAL REGIONS A3985

Fig. 3. Approximation results of f(\bfx ) =
\sum 6

i=1 \phi 2(\| \bfz i  - \bfx \| 2) over the unit sphere via \scrT L, \scrF L,
and \scrL \lambda 

L.

impulse noise with a = 0.02. Let z1 = [1, 0, 0]T, z2 = [ - 1, 0, 0]T, z3 = [0, 1, 0]T,
z4 = [0, - 1, 0]T, z5 = [0, 0, 1]T, and z6 = [0, 0, - 1]T. The testing function f is defined
as

(5.5) f(x) =

6\sum 
i=1

\phi 2(\| zi  - x\| 2),

where \phi 2(r) := \~\phi 2 (r/\delta 2) is a normalized Wendland function [11], with \~\phi 2(r) :=

(max\{ 1 - r, 0\} )6 (35r2 + 18r + 3)/3 being an original Wendland function [50] and
\delta 2 = (9\Gamma (5/2))/(2\Gamma (3)). In this experiment, we employ well-conditioned spherical
t-designs [1], which are designed to have good geometry properties for integration and
regularized least squares approximation [2]. Let \scrX N be a well-conditioned spherical t-
design with N = (t+1)2, L = 15, t = 2L = 30, \lambda = 10 - 2.5, and all \mu \ell being 1 [1]. We
also use an advanced Tikhonov regularized least squares approximation technique for
comparison which incorporates with Laplace--Beltrami operators in order to reduce
noise [2]. As Laplace--Beltrami operators are adopted, a relatively small \lambda = 10 - 3.5

is desired for \scrT L. Figure 3 shows the denoising ability of Lasso hyperinterpolation in
the approximation of f , which is considered onerous with respect to noise reduction,
tasks as its limits smoothness at the centers zi and at the boundary of each cap (see
the exact function) with center zi [28, 49].

Table 3 reports the L2 approximation errors of the same function but with respect
to different values of \lambda and different \sigma , which describes the level of Gaussian noise.
The level a = 0.02 of single-impulse noise is fixed. In addition, the sparsity of Lasso
hyperinterpolation coefficients is also reported. In this experiment, there should be
256 coefficients in constructing \scrT 15f , \scrF 15f , and \scrL \lambda 15f . For each setting of \lambda and a, we
test five times and report the average values. Table 3 shows the denoising ability of
\scrL \lambda L with respect to mixed Gaussian noise and impulse noise. Even comparing with the
Tikhonov least squares approximation making use of the Laplace--Beltrami operator,
which reported satisfying denoising ability in [2], \scrL \lambda L still reports an approximation
quality outperforming that of \scrT L with an appropriate choice of \lambda .
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Table 3
Approximation errors and the sparsity of Lasso hyperinterpolation coefficients of a Wendland

function (5.5) over a unit sphere via \scrT L, \scrF L, and \scrL \lambda 
L, with different values of \lambda , fixed a = 0.02

in generating single-impulse noise, and different values of \sigma used in generating Gaussian noise. In
columns 6--9, \lambda = 10 - 2.5 for \scrL \lambda 

L and \lambda = 10 - 3.5 for \scrT L.

\sigma = 0.02, and \lambda takes \sigma takes
10 - 3.5 10 - 3 10 - 2.5 10 - 2 0.015 0.02 0.025 0.03

Tikhonov 0.0064 0.0114 0.0208 0.0301 0.0055 0.0067 0.0066 0.0075
Filtered 0.0119 0.0112 0.0110 0.0107 0.0089 0.0111 0.0131 0.0158
Lasso 0.0109 0.0081 0.0037 0.0053 0.0026 0.0039 0.0051 0.0073
\| \bfitbeta \| 0 233.6 184.8 55 3 33.6 56.8 74.4 95.8

5.4. The cube. We consider a unit cube \Omega = [ - 1, 1]3 \subset \BbbR 3 with d\omega = \omega (x)dx,
x = [x1, x2, x3]

T, where the measure is given by the product Chebyshev weight func-

tion d\omega = \omega (x)dx and \omega (x) := (1/\pi 3)
\prod 3
i=1(1/

\sqrt{} 
1 - x2

i ). Thus, in the unit cube,

V =

\int 
[ - 1,1]3

1

\pi 3

3\prod 
i=1

1\sqrt{} 
1 - x2

i

dx = 1.

It is simple to implement quadrature in the cube; actually, we should call it a cubature
by tensor products from its one-dimensional version. However, we mention a tailored
cubature for hyperinterpolation in a three-dimensional cube [10, 14]. As \BbbP L is a linear
space of polynomials of degree at most L in the cube [ - 1, 1]3, we have d =

\bigl( 
L+3
3

\bigr) 
=

(L+3)(L+2)(L+1)/6. Note that for interval [ - 1, 1] and square [ - 1, 1]2, there exist
minimal quadrature rules (cf. Definition 2.3) [53], but for cube [ - 1, 1]3, the required
number of nodes is much greater than the lower bound d. Thus, the reason why
we desire the new cubature in [14] is that the required number N of points for its

exactness is only about 2
\bigl( \bigl\lfloor 
L
2

\bigr\rfloor \bigr) 3
(1 + o(L - 1)). Roughly speaking, N \approx L3/4, which

is substantially less than its previous cubature rules; for example, see [7].
Let \{ p\ell \} be a family of product orthonormal Chebyshev basis [16] with p\ell (x) :=

\~T\ell 1(x1) \~T\ell 2(x2) \~T\ell 3(x3), where \~Tk(\cdot ) =
\surd 
2 cos(k arccos(\cdot )) for k > 0 and \~T0(\cdot ) = 1, and

let CL = \{ cos(k\pi /L), k = 0, . . . , L\} be the set of L + 1 Chebyshev--Lobatto points.
Then choose a node set \scrX L =

\bigl( 
CE
L+1 \times CE

L+1 \times CE
L+1

\bigr) 
\cup 
\bigl( 
CO
L+1 \times CO

L+1 \times CO
L+1

\bigr) 
,

where CE
L+1 and CO

L+1 are the restriction of CL+1 to even (``E"") and odd (``O"")
indices, respectively, and the corresponding weights are given by

w\bfitxi :=
4

(L+ 1)3

\left\{         
1 if \bfitxi is an interior point,

1/2 if \bfitxi is a face point,

1/4 if \bfitxi is an edge point,

1/8 if \bfitxi is a vertex point.

Fix L as the degree of Lasso hyperinterpolation polynomial by \ell 1 + \ell 2 + \ell 3 \leq L,
and require the number of nodes, which is about L3/4, to guarantee the exactness of
the cubature rule [14]. Let

(5.6) F (\bfitxi ) = F (\xi 1, \xi 2, \xi 3) =

\Biggl\{ 
w\bfitxi f(\bfitxi ), \bfitxi \in \scrX L,
0, \bfitxi \in (CL+1 \times CL+1 \times CL+1) \setminus \scrX L.

The Lasso hyperinterpolation (3.6) becomes

(5.7) \scrL \lambda Lf :=
\sum 

\ell 1+\ell 2+\ell 3\leq L

\scrS \lambda \mu \ell 
(\alpha \ell ) p\ell 
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Fig. 4. Approximation results of f(x, y, z) = exp( - 1/(x2 + y2 + z2)) in the unit cube via \scrT L,
\scrF L, and \scrL \lambda 

L.

with hyperinterpolation coefficients

\alpha \ell = \gamma \ell 

L+1\sum 
i=0

\left(  L+1\sum 
j=0

\Biggl( 
L+1\sum 
k=0

Fijk cos
k\ell 1\pi 

L+ 1

\Biggr) 
cos

j\ell 2\pi 

L+ 1

\right)  cos
i\ell 3\pi 

L+ 1
,

where Fijk = F
\Bigl( 
cos i\pi 

L+1 , cos
j\pi 
L+1 , cos

k\pi 
L+1

\Bigr) 
, 0 \leq i, j, k \leq L+ 1, and

\gamma \ell =

3\prod 
s=1

\gamma \ell s , \gamma \ell s =

\Biggl\{ \surd 
2, \ell s > 0,

1, \ell s = 0,
s = 1, 2, 3.

Remark 5.1. The above derivation is based on a special case of the new cubature
in [14]. Actually, there are another three cases in a cube, but authors of [14] stated
that numerical behaviors of these cubature rules should be the same. Hence, (5.7) is
also a special version of Lasso hyperinterpolation in [ - 1, 1]3 of degree L based on the
cubature in [14], which finally computes (L+ 1)(L+ 2)(L+ 3)/6 \approx L3/6 coefficients
and requires about L3/4 nodes.

We test function f(x, y, z) = exp( - 1/(x2+ y2+ z2)) contaminated by some noise
(all nonzero values of the function are perturbed by Gaussian noise of standard deriva-
tion \sigma = 0.2) via \scrT L, \scrF L, and \scrL \lambda L. It is hard to display the approximation results in a
cube, which are in a format of three-dimentional volumetric data. Figure 4 displays
these data along some slice planes, including x =  - 0.25, x = 0.5, x = 1, y = 0, y = 1,
z =  - 1, and z = 0, which provides a window into approximation results of the test
function. Set L = 50, \lambda = 10 - 2.5, and all \mu \ell to be 1 in this experiment, in which
33150 quadrature points are required to ensure the exactness (2.3) of the cubature
rule. Figure 4 illustrates great recovering ability of contaminated f in the presence of
noise.

Table 4 reports the L2 approximation errors of the same function but with respect
to different values of \lambda and different \sigma which describes the level of noise. In addition,
the sparsity of Lasso hyperinterpolation coefficients is also reported. In this experi-
ment, there should be 22100 coefficients in constructing \scrT 50f , \scrF 50f , and \scrL \lambda 50f . For
each setting of \lambda and \sigma , we test five times and report the average values. Comparing
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Table 4
Approximation errors and the sparsity of Lasso hyperinterpolation coefficients of f(x, y, z) =

exp( - 1/(x2 + y2 + z2)) in a unit cube via \scrT L, \scrF L, and \scrL \lambda 
L, with different values of \lambda and different

values of \sigma used in generating Gaussian noise.

\sigma = 0.2, and \lambda takes \lambda = 10 - 2.5, and \sigma takes
10 - 2.5 10 - 2.4 10 - 2.3 10 - 2 0.002 0.05 0.2 0.4

Tikhonov 11.056 11.828 11.951 12.198 0.1469 3.0025 11.992 23.279
Filtered 11.557 10.758 11.436 11.337 0.1131 2.8722 11.241 24.725
Lasso 0.9744 0.9761 1.1014 1.7302 0.8764 0.8776 0.9870 6.2842
\| \bfitbeta \| 0 104.4 19 10.4 7 11 11 104.6 3353.4

with \scrT L and \scrF L, Table 4 shows much better denoising quality of \scrL \lambda L with respect to
Gaussian noise and more robustness of \scrL \lambda L with respect to an increasing level of noise.
The sparsity of \bfitbeta increases as the level of noise increases, but this process seems to
be more sensitive than that on the other three manifolds, which is due to a larger
number (22100) of coefficients in constructing \scrT 50f .

6. Final remarks. In this paper, we introduce a novel approximation scheme
\scrL \lambda L for function approximation with noisy data and derive general theory (error es-
timation) for it on general regions. The theory applies to four particular manifolds
well, including an interval, a disc, a 2-sphere, and a 3-cube, but it is also shown that
there exist obvious differences from manifold to manifold. Let us list some of them. In
theory, from discussions on the case of smooth functions in section 4.3, additional geo-
metric properties of \Omega could relax the assumption on f from f \in \scrC k,\zeta (\Omega ) to f \in \scrC k(\Omega )
with the convergence order \scrO (L - k) maintained. In a numerical perspective, approx-
imation qualities are sensitive to the level of noise in a 3-cube, but they are not so
sensitive on the other three manifolds. On a 2-sphere, as spherical harmonics have an
intrinsic characterization as the eigenfunctions of the Laplace--Beltrami operator, the
operator can be incorporated into Tikhonov regularized least squares approximation
[2], which provides a constructive approach for function approximation with noisy
data. Hence, when \scrL \lambda L is used in real-world applications, such as geomathematics
(the Earth's potato shape can be mapped to a 2-sphere by an appropriate smooth
mapping) and hydrocarbon exploration (modeled in a 3-cube), one shall take the
geometric properties of particular \Omega into account.

Our approach is achieved by a soft threshold operator, and our theory is derived
with assumptions that additive noise \epsilon j is sub-Gaussian and f \in \scrC (\Omega ) or \scrC k,\zeta (\Omega ) with
0 < \zeta \leq 1. We may survey some of our results which can be improved or extended
further. The \ell 1 regularization (Lasso) corresponds to a soft threshold operator, which
is studied in this paper, but one may consider other types of threshold operators, e.g.,
a hard threshold operator [19]. We adopt sub-Gaussian random variables to model
noise, but from our discussion on noise in section 4.2, once we know the distribution
of \epsilon j , we can estimate the expectation of \| \bfitepsilon \| \infty analytically. Thus, other types of noise
may also be studied, for example, noise modeled by subexponential random variables,
including Rayleigh noise, gamma noise, and exponential noise. We may also consider
other function spaces which measure the smoothness of f . An important direction is
to consider some Sobolev spaces [13, 23]. In this case, error estimations of \scrL \lambda L may be
derived and controlled by Sobolev norms of f rather than uniform norms. We only
investigate four low-dimensional manifolds in this paper; however, some other low- and
high-dimensional manifolds could be considered, e.g., s-cubes, (s - 1)-spheres, s-balls,
and so forth. We refer the reader to [48] for s-cubes, [27, 39, 41] for (s - 1)-spheres,
and [46] for s-balls.
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