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This thesis aims to advance numerical analysis towards practical scenarios in which
the available information for numerical algorithms is partial, contaminated, and
priced. These scenarios represent information-based situations crucial in practical
applications, particularly when the available information is predetermined or ob-
taining sufficient information can be difficult and costly. The resulting paradigm is
referred to as information-based numerical analysis, and the main motivation is to
develop numerical algorithms that achieve a reasonable level of accuracy with lim-
ited and possibly predetermined information. The thesis explores this new paradigm
with concrete numerical algorithms in three numerical analysis topics.

The first part of the thesis focuses on numerical approximation, specifically on
hyperinterpolation. Hyperinterpolation is a quadrature-based discretization of the
orthogonal projection, and constructing a hyperinterpolant of degree n requires a
positive-weight quadrature rule with exactness degree 2n. Using the Marcinkiewicz–
Zygmund (MZ) system of quadrature rules, which can be regarded as a restricted
isometry of the quadrature rules in the numerical integration of polynomials of cer-
tain degrees, the thesis shows that hyperinterpolation can be constructed with a
reasonable error bound in the presence of the quadrature exactness assumption, sug-
gesting that it is reliable in regard of the information-based situation. The thesis also
proposes a variant of this scheme in approximating singular and oscillatory functions,
leveraging the product-integration method and attaining the desired accuracy with
fewer quadrature points than the original hyperinterpolation.

The second part of the thesis proposes and analyzes a quadrature-based spectral
method for solving the Allen–Cahn equation on spheres based on the approximation
results in the previous part. This method employs hyperinterpolation and the MZ
system of quadrature rules, achieving the theoretical benefits of the Galerkin method



at a computational cost comparable to the collocation method. This method does
not necessarily rely on the quadrature exactness assumption, which confronts more
practical simulations situations and distinguishes it from previous quadrature-based
methods. Moreover, this method also possesses an effective maximum principle,
which allows the numerical solutions to deviate from the sharp bound by a control-
lable discretization error.

The third part of the thesis focuses on compressed sensing and imaging, inves-
tigating models that reconstruct unknown signals and images from their incomplete
and inaccurate measurements. These models can be formulated as solving an un-
derdetermined linear system. The thesis introduces the springback penalty and the
enhanced total variation (TV) regularization and establishes the exact and stable
reconstruction theory for these models under the restricted isometry property (RIP)
framework. The thesis shows that the springback and enhanced TV models have
tighter reconstruction error bounds than various convex and non-convex models for
scenarios where the amount of measurements is limited and the level of noise is
significant.

Overall, this thesis contributes to the development of numerical algorithms that
require less information while achieving the desired level of accuracy. The proposed
algorithms in this thesis demonstrate their effectiveness and theoretical superiority
over existing algorithms in various numerical analysis topics regarding information-
based situations. The investigation in this thesis may enlighten the development of
numerical algorithms for other problems that involve information-based situations.
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Notations

General
N set of positive integers
N0 set of non-negative integers
R set of real numbers
C set of complex numbers
Rd set of the d-tuples of real numbers
Sd unit d-sphere {x ∈ Rd+1 : ‖x‖2 ≤ 1} in Rd+1 (d ≥ 2)

Ω closure of a connected open domain or a smooth closed lower-
dimensional manifold

(a, b) open interval {x ∈ R : a < x < b} in R
[a, b] closed interval {x ∈ R : a ≤ x ≤ b} in R

dist(x, y) geodesic distance between x, y ∈ Sd

bxc integer part of x ∈ R
sgn(x) sign function of x ∈ R
supp(x) support {1 ≤ i ≤ n : xi 6= 0} of x ∈ Rn

x ◦ y Hadamard (entry-wise) product between x and y
δij Kronecker delta
Γ(·) Gamma function
(·)n Pochhammer symbol
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Asymptotics
O(·) Big-Oh notation
∼ f(x) ∼ g(x) denotes f(x)/g(x)→ 1 as x→∞
. a . b denotes there exists c > 0 such that a ≤ cb
& a & b denotes there exists c > 0 such that a ≥ cb
� an � bn denotes there exists c1, c2 > 0 independent of n such

that c1an ≤ bn ≤ c2an



a� b a is much less than b
a� b a is much greater than b

Functional Analysis
C(Ω) space of continuous functions over Ω

Lp(Ω) space of all measurable functions from Ω to R or C whose ab-
solute value raised to the p-th power has a finite integral

W k,p(Ω) Sobolev space of order k for 1 ≤ p ≤ ∞ over Ω

Hk(Ω) Sobolev space of order k with p = 2 over Ω
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each term has a finite sum.
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‖ · ‖p Lp or `p norm
〈·, ·〉 inner product
〈·, ·〉m discrete inner product by an m-point quadrature
∂(f(x)) subdifferential of convex function f at x

Approximation Theory
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En(f) best uniform approximation error of f ∈ C(Ω) by polynomials
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Y`,k real-valued spherical harmonic of degree ` and index k
Z(d, `) number of mutually orthonormal real-valued spherical harmon-

ics of degree `

Differential Equations
∇ gradient or first-order Beltrami operator
∆ Laplace or Laplace–Beltrami operator
L constant-coefficient linear differential operator



N constant-coefficient nonlinear differential (or non-differential)
operator of lower order

E(u) energy functional of solution u
Ẽ(u) discrete energy functional of solution u

Compressed sensing and imaging
x signal
x̄ ground-truth signal
xopt recovered signal by solving some minimization problems (in the-

ory)
x∗ global or local minimum point by solving some minimization

problems numerically
A sensing matrix
b measurements of x̄ (possibly contaminated by noise)

X image
X̄ ground-truth image
Xopt recovered signal by solving some minimization problems (in the-

ory)
X∗ global or local minimum point by solving some minimization

problems numerically
M sensing operator
y measurements of X̄ (possibly contaminated by noise)
H bivariate Haar transform
F bivariate discrete Fourier transform

Λ index set as a subset of {1, 2, . . . , n} (or with some su-
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|Λ| cardinality of Λ
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Chapter 1

Introduction

This thesis delves into the practical aspects of numerical analysis, which is the field
of study that deals with numerical methods that aim to find approximate solutions
to problems rather than exact ones. The scope of numerical analysis encompasses
various subareas, including but not limited to approximation and interpolation, nu-
merical differentiation and integration, numerical linear algebra, numerical optimiza-
tion, finding roots of nonlinear equations, numerical methods for ordinary and partial
differential equations, and numerical methods for integral equations. Each of these
subareas corresponds to a topic in mathematical analysis. In his essay [218] entitled
“The definition of numerical analysis,” Lloyd N. Trefethen presented his definition of
numerical analysis, stating that

Numerical analysis is the study of algorithms for the problems of contin-
uous mathematics.

This definition has helped to shift the perception of numerical analysis from the
study of rounding errors to the study of algorithms. As included in an appendix
to Trefethen’s popular book [223] on numerical linear algebra, this definition might
have become one of the most familiar ones to numerical analysts of our generation.

In order to implement the developed numerical algorithms and further apply
them to real-world problems, it is often necessary to approximate the continuous
problem with a discrete one. This process, known as discretization, is a fundamental
part of numerical analysis due to the floating point arithmetic of digital computers.
Digital computers use a finite number of bits to represent a real number, resulting
in a representation of only a finite subset of the real numbers. Consequently, there
are gaps between the represented numbers, and we must take discrete samples of
continuous objects for numerical computation. To analyze the accuracy, stability,
and conditioning of algorithms in the context of floating point arithmetic, we refer
to [113].
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1.1 Information-based numerical analysis

Each subarea of numerical analysis emphasizes where to take the discrete samples.
For example, in the case of univariate numerical approximation, the choice of sam-
pling points depends on the nature of the function to be approximated. For periodic
functions, equispaced points are a viable option, while for non-periodic functions,
equispaced points lead to the undesirable Runge’s phenomenon. Instead, Cheby-
shev technology can be used, which involves sampling the function at Chebyshev
points. The superiority of Chebyshev technology in practice has been extensively
documented in [221, Chapter 1], and this technology has also been extended to spec-
tral methods such as pseudospectral methods [219] and spectral Galerkin methods
[190].

The development of these numerical algorithms assumes full access to the func-
tion f , which is sufficient for computer implementation. However, there are still gaps
between numerical analysis and real-world application, where the main motivation
of this thesis arises. In practice, we may not be fortunate enough to be granted full
access to the function f but only a set of samples of it (or more generally, a set of
linear functional of f). Furthermore, obtaining these samples can be difficult and
costly, and the sampling process may be contaminated. In addition, the distribution
of samples may be predetermined by the problem at hand or by engineers, limiting
our control over the sampling locations.

Despite these challenges, we may have some knowledge of the global properties
of f , such as its belonging to a class of smooth, convex, or periodic functions. Even
if not granted full access to f , we are still intrigued to develop numerical algorithms
that can produce reliable results with limited information. This is what we call
information-based numerical analysis in this thesis:

Information-based numerical analysis is the study of algorithms for the
problems of continuous mathematics without full access to the concerned
objects but only partial, contaminated, and priced information.

In other words, this thesis aims to develop numerical methods that are robust to
imperfect and limited sampling, with the number of needed samples reduced. The
term “information-based,” borrowed from the field of information-based complexity
[217, 236], refers to the situation where

• Information is partial. That is, having a priori knowledge and a finite set
of samples, we cannot, in general, solve the continuous mathematics problem
exactly and uniquely.
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• Information is contaminated. That is, it is computed with errors. Examples
include sampling noise and round-off errors.

• Information is priced. That is, we are charged for each sample.

Here information refers not to Claude Shannon and information theory but to what
we know about the problem to be solved.

The issue of information-based complexity has also sparked the interest of nu-
merical analysts, as seen in Ivo Babuška’s survey [16] on quadrature and finite ele-
ment methods and Mike Powell’s works [165, 166, 167, 168, 169, 170] on derivative-
free optimization. However, our focus differs from the field of information-based
complexity in the sense that we are not concerned with estimating the total cost of
acquiring information and computation to obtain an approximate solution. Instead,
we aim to develop algorithms that provide reliable solutions for problems of interest
with a reasonable error bound.

Numerical analysis is a well-established field, and our methodology in this thesis
enhances existing numerical methods by reducing the required number of samples
or by weakening and even dismissing the original requirements and replacing them
with milder ones on samples. A noteworthy feature of these mild conditions in this
thesis is that they all represent the restricted isometry of the samples. Our inves-
tigation in this thesis focuses on numerical approximation, numerical methods for
partial differential equations (PDEs), and compressed sensing (problems formulated
as solving underdetermined systems of linear equations) among various subareas of
numerical analysis, and we hope to extend our approach to other subareas that in-
volve information-based situations in the future. We specifically focus on problems
with domains of more than one dimension.

The paper is thus divided into three parts: polynomial approximation, numeri-
cal solutions to PDEs, and compressed sensing and imaging. Our goal is to develop
algorithms that can reliably solve these problems with limited and imperfect infor-
mation.

1.2 Polynomial approximation

InChapters 2–4, we investigate polynomial approximation of functions f from a set
of discrete samples {f(xj)}mj=1 at m points {xj}mj=1. In numerical analysis, two con-
ventional methods are interpolation and approximation. The univariate polynomial
approximation is a must-have chapter in almost every numerical analysis textbook.
However, in the multivariate setting, the Mairhuber–Curtis Theorem states that
there are no Haar spaces [232, Chapter 2]; that is, it is impossible to interpolate all
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kinds of data at any set of samples with size equaling the dimension of the space of
polynomials of degree at most n by a specific polynomial of degree n. If one still
wants to interpolate function samples, he may consider radial basis function inter-
polation via solving some large-scale interpolation equations, which is beyond the
scope of this thesis. For radial basis function approximation, we refer to [232].

For approximation, the discrete least squares approximation might be a simple
but powerful method, which aims to find a polynomial p of degree n that minimizes
the loss function

∑m
j=1[f(xj) − p(xj)]2. However, it is sometimes hard to analyze

the approximation error of f by p unless we have an explicit expression of p or its
coefficients with respect to some orthonormal basis.

Besides, an important tool in numerical analysis is the orthogonal projection.
Let Ω be a bounded region of Rd with measure dω, which is either the closure of
a connected open domain or a smooth closed lower-dimensional manifold in Rd.
This region is assumed to have finite measure with respect to dω. We denote by
Pn ⊂ L2(Ω) the linear space of polynomials on Ω of degree at most n, equipped with
the L2 inner product

〈v, z〉 =

∫
Ω
vzdω. (1.2.1)

Let {p1, p2 . . . , pdn} ⊂ Pn be an orthonormal basis of Pn in the sense of

〈p`, p`′〉 = δ``′

for 1 ≤ `, `′ ≤ dn, where dn = dimPn is the dimension of Pn. Given an L2 function
f , the orthogonal projection of f onto the space Pn is defined as

Pnf :=

dn∑
`=1

〈f, p`〉 p` ∈ Pn. (1.2.2)

However, the orthogonal projection cannot be implemented on computers because
coefficients as inner products cannot be evaluated exactly.

In the early 1990s, Ian H. Sloan became intrigued by the conundrum of whether
the interpolation of a periodic function on an interval (or equivalently, for a function
on a circle) has properties as good as those of the more famous orthogonal projection
(1.2.2). Though for spheres of dimension more than one and many other multidi-
mensional regions, this is not the case and interpolation on spheres remains very
problematic [234], a discrete approximation with the right properties is available,
albeit using more points than interpolation. This approximation, now known as



Chapter 1. Introduction 5

hyperinterpolation, appeared in the paper [196], of which Sloan was rather proud1.
Constructing hyperinterpolants requires an m-point quadrature rule of the form

m∑
j=1

wjg(xj) ≈
∫

Ω
gdω, (1.2.3)

where the quadrature points xj belong to Ω and weights wj are all positive for
j = 1, 2, . . . ,m. For a comprehensive introduction to numerical integration, we refer
to the classic book [68]. Assuming that the quadrature rule (1.2.3) has exactness
degree 2n, i.e.,

m∑
j=1

wjg(xj) =

∫
Ω
gdω ∀g ∈ P2n, (1.2.4)

the hyperinterpolation operator Ln : C(Ω) → Pn maps a continuous function f ∈
C(Ω) on Ω to

Lnf :=

dn∑
`=1

〈f, p`〉mp`, (1.2.5)

where

〈v, z〉m :=
m∑
j=1

wjv(xj)z(xj)

is a “discrete version” of the L2 inner product (1.2.1). Thus, hyperinterpolation can
be regarded as a discrete version of the orthogonal projection from C(Ω) onto Pn with
respect to (1.2.1). Moreover, hyperinterpolation can be reduced to interpolation if a
minimal quadrature exists and is applied — anm-point quadrature rule (1.2.3) is said
to be minimal if it is exact for all polynomials of degree at most 2n and m = dimPn.
Furthermore, hyperinterpolation is a minimizer of the following discrete, weighted
least squares approximation

min
p∈Pn

m∑
j=1

wj [f(xj)− p(xj)]2.

The subsequent development of hyperinterpolation has mainly focused on its
application to the sphere, as documented in a number of works, including [67, 110,
128, 137, 177, 178, 202, 234]. Meanwhile, hyperinterpolation has also been explored
on other regions, such as the disk [106], the square [39], the cube [40, 224], and
spherical triangles [206]. While hyperinterpolation has been shown to be a pow-
erful tool for approximating functions of multiple variables in all of these works,
it should be noted that the exactness degree 2n of the quadrature rule (1.2.3) is

1See “A Fortunate Scientific Life” by Ian H. Sloan, included in the book entitled Contemporary
Computational Mathematics – A Celebration of the 80th Birthday of Ian Sloan.
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a central assumption in the construction of hyperinterpolants. This assumption is
also maintained in some variants of hyperinterpolation, such as filtered hyperinter-
polation [205] (which requires even more degrees) and some regularized versions of
hyperinterpolation [8, 9, 10].

Given the highly restrictive nature of the quadrature exactness assumption, it
is often impractical or impossible to obtain data on the desired quadrature points in
practice. Therefore, one aim of this part is to relax and even bypass this assumption.
We provide a recipe based on the Marcinkiewicz–Zygmund property, which assumes
the existence of an η ∈ [0, 1) such that∣∣∣∣∣∣

m∑
j=1

wjχ(xj)
2 −

∫
Ω
χ2dω

∣∣∣∣∣∣ ≤ η
∫

Ω
χ2dω ∀χ ∈ Pn.

If the quadrature exactness assumption (1.2.4) holds, then η is equal to 0. This
property can be equivalently expressed as the Marcinkiewicz–Zygmund inequality
[89, 143, 146] applied to polynomials of degree at most 2n, and is referred to as the
Marcinkiewicz-Zygmund property in this thesis. Specifically, it can be written as

(1− η)

∫
Ω
χ2dωd ≤

m∑
j=1

wjχ(xj)
2 ≤ (1 + η)

∫
Ω
χ2dωd ∀χ ∈ Pn.

This inequality can be interpreted as a restricted isometry of {χ(xj)}mj=1 in numer-
ically evaluating the integral of χ2 for any χ ∈ Pn. The motivation for introducing
the Marcinkiewicz–Zygmund property is explained on page 21. With the property,
it is shown that even if the quadrature exactness assumption (1.2.4) is weakened or
dismissed, reasonable error bounds for the approximation by hyperinterpolation can
still be obtained. Moreover, special attention is paid to examining the behavior of
hyperinterpolation in approximating singular and oscillatory functions.

1.3 Numerical solutions to PDEs

In the second part of this thesis, consisting of Chapter 5 only, we aim to apply our
approximation scheme from the first part to compute smooth solutions of stiff, semi-
linear PDEs on the unit sphere Sd−1 = {x ∈ Rd : ‖x‖2 = 1} ⊂ Rd with dimension
d ≥ 3 of the form

ut = Lu+ N(u), u(0, x) = u0(x),

where u = u(t, x) with (t, x) ∈ [0,∞) × Sd−1 is a function of time t and spatial
variable x ∈ Sd−1, L is a constant-coefficient linear differential operator, and N is a
constant-coefficient nonlinear differential (or non-differential) operator of lower order.
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In applications, equations of this kind typically arise when two or more different
physical processes are combined, and many equations in science and engineering
take this form (5.1.1).

PDEs on the sphere are often used to describe geological, meteorological, and
oceanic problems, since the sphere can be regarded as a rough model of the earth.
Moreover, solving PDEs on the sphere, which is the simplest version of smooth,
compact manifolds, provides some insights for solving PDEs on an arbitrary, smooth,
compact manifold.

As a model equation, we focus on the Allen–Cahn equation

ut = ν2∆u− F ′(u), u(0, x) = u0(x),

where ∆ is the Laplace–Beltrami operator on Sd−1. This equation with linear diffu-
sion ν2∆u and a nonlinear reaction term F ′(u) was introduced by Allen and Cahn
in the 1970s to describe the process of phase separation in iron alloys [5]. In this
reaction-diffusion equation, u = u(t, x) is a scalar function typically representing the
concentration of one of the two metallic components of the alloy. The nonlinear term
has the usual double well form of

F ′(u) = f(u) = u3 − u

with
F (u) =

1

4
(u2 − 1)2.

We will also focus on the stiff case of ν � 1, where numerical methods for solving
the Allen–Cahn equation may be numerically unstable unless the time stepping size,
which depends on ν, is extremely small. Thus, we aim to develop numerical methods
that are stable with large time stepping sizes since long-time simulations of the Allen–
Cahn equation and many other phase-field models are necessary for stable solutions.
It is worth noting that the techniques presented in this chapter can be applied to
more general PDEs.

The Allen–Cahn equation possesses two intrinsic properties, namely, energy sta-
bility and the maximum principle. In the literature, numerical methods for this
equation have been designed to preserve these properties. As seen in [57, 87, 133,
192, 193, 241] and references therein, these methods aim to maintain energy stabil-
ity. Additionally, many methods, such as [114, 136, 191], also aim to preserve the
maximum principle of the numerical solutions.

However, in some cases, only modified energy stability can be analyzed, and
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some undesired, stringent conditions on the numerical schemes are introduced for
stability or accuracy, such as small time stepping sizes that depend on ν. These
conditions can increase simulation time. Furthermore, these methods often rely on
quadrature rules with exactness, which may not be practical when facing information-
based situations, as previously discussed.

In this part, we present a quadrature-based spectral method for solving the
Allen–Cahn equation using the approximation results from the previous part. Our
motivation for this method is presented as follows. On the one hand, many existing
numerical schemes for this equation assume small time stepping sizes that depend on
ν, introducing stringent conditions on the numerical scheme and increasing the simu-
lation time. We aim to lift these conditions and instead impose mild conditions solely
on the polynomial degree of numerical solutions, independent of the time stepping
size. This idea is motivated by a recent work [131], which proposes an effective max-
imum principle was proposed. This principle is an almost sharp maximum principle
that allows the numerical solutions to deviate from the sharp bound by a control-
lable discretization error without introducing stringent conditions on the numerical
scheme. Such an approach sounds practical and reasonable for numerical analysts.
On the other hand, our method is designed to confront the information-based sit-
uation. It does not necessarily rely on the assumption of quadrature exactness for
preserving the effective maximum principle and the L∞ stability of the numerical
solution. Even if a set of random samples of the initial condition u(0, x) = u0(x) is
available, our numerical scheme still preserves the effective maximum principle. If
the quadrature rule has sufficient exactness degrees, our method is energy stable and
equivalent to the discrete Galerkin method.

1.4 Compressed sensing and imaging

In Chapters 6–7, we investigate the reconstruction of signals and images from their
subsampled measurements, which can be modeled as solving an underdetermined
linear system. Mathematically, a signal reconstruction problem can be expressed as
estimating an unknown x̄ ∈ Rn from an underdetermined linear system

b = Ax̄+ e, (1.4.1)

where A ∈ Rm×n is a full row-rank sensing matrix such as a projection or trans-
formation matrix (see, e.g., [37, 43, 44]) with m � n, b ∈ Rm \ {0} is a vector of
measurements, and e ∈ Rm is some unknown but bounded noise perturbation with
‖e‖2 ≤ τ . Physically, a signal of interest, or its coefficients under certain transforma-
tion, is often sparse (see, e.g., [37]). Hence, it is natural to seek a sparse solution to



Chapter 1. Introduction 9

the underdetermined linear system (1.4.1), though it has infinitely many solutions.
We say that x ∈ Rn is s-sparse if ‖x‖0 ≤ s, where ‖x‖0 counts the number of nonzero
entries of x. To find the sparsest solution to (1.4.1), one may consider solving the
following minimization problem:

min
x∈Rn

‖x‖0 s.t. ‖Ax− b‖2 ≤ τ, (1.4.2)

in which ‖x‖0 serves as a penalty term of the sparsity, and it is referred to as the
`0 penalty for convenience. Due to the discrete and discontinuous nature of the
`0 penalty, the model (1.4.2) is NP-hard [37]. This means the model (1.4.2) is
computationally intractable, and this difficulty has inspired many alternatives to the
`0 penalty in the literature. A fundamental proxy of the model (1.4.2) is the basis
pursuit (BP) problem proposed in [58]:

min
x∈Rn

‖x‖1 s.t. ‖Ax− b‖2 ≤ τ. (1.4.3)

In this convex model, ‖x‖1 :=
∑n

i=1 |xi| and it is called the `1 penalty hereafter.
Recall that ‖x‖1 is the convex envelope of ‖x‖0 (see, e.g., [180]), and it induces
sparsity most efficiently among all convex penalties (see [37]). The BP problem
(1.4.3) has been intensively studied in voluminous papers since the seminal works
[42, 43, 74], in which various conditions have been comprehensively explored for the
exact reconstruction via the convex model (1.4.3).

The BP problem (1.4.3) is crucial for signal reconstruction, but its solution can
suffer from over-penalization because the `1 penalty tends to underestimate high-
amplitude components of the solution, as discussed in [83]. Therefore, it is reasonable
to consider non-convex alternatives to the `1 penalty and upgrade the model (1.4.3) to
achieve a more accurate reconstruction. In the literature, some non-convex penalties
have been well studied, such as the smoothly clipped absolute deviation (SCAD)
[83], the capped `1 penalty [244], the transformed `1 penalty [142, 243], and the
`p penalty with 0 < p < 1 [54, 55, 124]. Besides, one particular penalty is the
minimax concave penalty (MCP) proposed in [240], and it has been widely shown to
be effective in reducing the bias from the `1 penalty [240]. Moreover, the so-called
`1−2 penalty has been studied in the literature, e.g. [82, 238, 239], to mention a
few. In summary, convex penalties are more tractable in both senses of theoretical
analysis and numerical computation, while they are less effective for achieving the
desired sparsity (i.e., the approximation to the `0 penalty is less accurate). Non-
convex penalties are generally the opposite.

In the seminal compressed sensing papers [41, 74], reconstruction conditions have
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been established for the BP model (1.4.3). These conditions rely on the restricted
isometry property (RIP) of the sensing matrix A, as proposed in [44]. For an index
set T ⊂ {1, 2, . . . , n} and an integer s with |T | ≤ s, the s-restricted isometry constant
(RIC) of A ∈ Rm×n is the smallest δs ∈ (0, 1) such that

(1− δs)‖x‖22 ≤ ‖ATx‖22 ≤ (1 + δs)‖x‖22

for all subsets T with |T | ≤ s and all x ∈ R|T |. The matrix A is said to satisfy
the s-restricted isometry property (RIP) with δs. If A satisfies the s-RIP, it means
that the sensing matrix preserves the geometry of s-sparse signals up to a certain
error level. This property forms the foundation of compressed sensing. As the name
suggests, the RIP also represents a restricted isometry of the sensed measurements.

In this thesis, we aim to find a penalty that combines the advantages of both the
`1 penalty and its non-convex alternatives while avoiding their drawbacks. Specifi-
cally, we propose the springback penalty

RSPB
α (x) = ‖x‖1 −

α

2
‖x‖22,

where α > 0 is a carefully chosen model parameter. We establish the exact and
stable reconstruction theory for the compressed sensing model using the springback
penalty under the RIP framework. Furthermore, we theoretically demonstrate the
superiority of the springback model over existing models in certain information-
based situations where measurement noise is high and the number of measurements
is limited, providing a sharper recovery bound. Overall, the springback penalty
offers an improved model for signal reconstruction, with benefits in both theoretical
analysis and numerical computation.

The compressed sensing theory is based on the assumption of the sparsity of
the (vector) signal of interest or its coefficients under certain transformations. This
assumption can also be extended to image reconstruction, as natural images X typ-
ically have (approximately) sparse gradients ∇X. An extension of the `1 penalty to
imaging is the anisotropic total variation (TV) if the image gradient∇X is considered
as a vector.

Given linear measurements y ∈ Cm observed via

y =MX̄ + e
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from an unknown image X̄ ∈ CN×N , where M : CN×N → Cm is a linear operator
defined component-wisely by

[M(X̄)]j := 〈Mj , X̄〉 = tr(MjX̄
∗),

for suitable matricesMj with m considerably smaller than N2, and e ∈ Cm is a noise
term bounded by ‖e‖2 ≤ τ with level τ ≥ 0, the reconstruction of the unknown X̄
can be modeled as the following TV minimization problem:

min
X∈CN×N

‖X‖TV s.t. ‖MX − y‖2 ≤ τ, (1.4.4)

where ‖ · ‖TV is the TV semi-norm.

It is important to note that while the compressed sensing theory is applicable
to sparse signals or signals that are sparse after an orthonormal transform, it cannot
be applied to the TV model (1.4.4) because the gradient transform ∇ : X → ∇X is
not orthonormal, as mentioned in [157]. The first compressed sensing theory tailored
for imaging and the TV model (1.4.4) was established in [157], also under the RIP
framework. In the realm of images, we say that a linear operator A : Cn1×n2 → Cm

has the RIP of order s and level δ ∈ (0, 1) if

(1− δ)‖X‖22 ≤ ‖AX‖22 ≤ (1 + δ)‖X‖22 ∀s-sparse X ∈ Cn1×n2 , (1.4.5)

and the smallest δ for (1.4.5) is said to be the restricted isometry constant (RIC)
associated with A.

We propose an extension of the compressed sensing theory with the springback
penalty to image reconstruction by introducing the enhanced TV regularization:

Rα(X) := ‖X‖TV −
α

2
‖∇X‖22,

where α > 0 is a carefully chosen parameter to ensure the positiveness or the well-
definedness of (7.1.6), and ‖∇X‖22 is the sum of the squared magnitudes of ∇X. In
the information-based situation, under certain weaker restricted isometry property
conditions, the enhanced TV minimization model is shown to have tighter recon-
struction error bounds than various TV-based models, especially when the noise
level is significant and the number of measurements is limited.
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1.5 Contributions

Specifically, we briefly summarize our results and contributions as follows. All our
results are verified by adequate convincing numerical experiments.

In Chapter 2, we provide a recipe — the Marcinkiewicz–Zygmund property —
for weakening the quadrature exactness assumption of hyperinterpolation. Specif-
ically, we examine the behavior of hyperinterpolation when the required exactness
degree 2n is relaxed to n + k with 0 < k ≤ n. Using the Marcinkiewicz–Zygmund
property, we show that the L2 norm of the exactness-relaxing hyperinterpolation
operator is bounded by a constant independent of n, and this approximation scheme
is convergent as n → ∞ if k is positively correlated to n. These results demon-
strate that hyperinterpolation is a reliable approximation scheme, even when the
original quadrature exactness assumption is partly ruined. Besides, the family of
candidate quadrature rules for constructing hyperinterpolants can be significantly
enriched, and the number of quadrature points can be considerably reduced. These
facts suggest that hyperinterpolation is a good method for approximating functions
regarding the information-based situation. As a potential cost, this relaxation may
slow the convergence rate of hyperinterpolation in terms of the reduced degrees of
quadrature exactness.

In Chapter 3, we focus on examining the efficiency of hyperinterpolation in
approximating singular and oscillatory functions, which are commonly encountered
in applied mathematics and physics. By efficiency, we mean achieving satisfactory
accuracy with a considerably small number of sampling points, which is crucial in
information-based situations. Singular and oscillatory functions typically require
more sampling points to attain satisfactory accuracy, which can be computationally
expensive. In this chapter, we propose a new approximation scheme called efficient
hyperinterpolation, which employs the product-integration method to achieve the
desired accuracy with fewer quadrature points than the original method. Building on
our results in Chapter 2, we provide theorems that establish the superiority of efficient
hyperinterpolation over the original method in approximating functions belonging
to L1(Ω), L2(Ω), and C(Ω) spaces, respectively. This study can be regarded as an
application of results in Chapter 2.

In Chapter 4, we further explore the idea of relaxing the quadrature exact-
ness assumption introduced in Chapter 2. The goal is to completely replace this
assumption with the Marcinkiewicz-Zygmund property, enabling the construction of
hyperinterpolation using positive-weight quadrature rules that do not require exact-
ness. This approach is referred to as unfettered hyperinterpolation. We provide a
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reasonable error estimate for this new method, which consists of two terms: one rep-
resenting the error estimate of the original hyperinterpolation with full quadrature
exactness, and another term that compensates for the loss of exactness degrees. We
offer a guide to controlling the newly introduced term in practice. Furthermore, if
the quadrature points form a quasi-Monte Carlo (QMC) design, a refined error es-
timate is available. These findings confirm that hyperinterpolation is a dependable
approximation scheme in the information-based situation.

In Chapter 5, we present a novel quadrature-based spectral method for solving
the Allen-Cahn equation on spheres. Our method utilizes hyperinterpolation and the
Marcinkiewicz-Zygmund system of quadrature rules to achieve the theoretical advan-
tages of the Galerkin method while maintaining a computational cost comparable to
the collocation method. This method eliminates the stringent requirements on the
time step size and imposes mild conditions on the polynomial degree of numerical
solutions. Additionally, it includes an effective maximum principle, which allows the
numerical solutions to deviate from the sharp bound by a controllable discretization
error. Our method does not rely on the quadrature exactness assumption to maintain
this principle in the information-based situation. If the quadrature rule has sufficient
exactness degrees, our method is guaranteed to be energy stable.

In Chapter 6, we introduce a novel penalty, known as the springback penalty,
for creating models that can reconstruct an unknown signal from incomplete and
inaccurate measurements. We establish exact and stable reconstruction theories for
the reconstruction model using the springback penalty, both for sparse and nearly
sparse signals, respectively, under the RIP framework. Furthermore, we derive an
easily implementable difference-of-convex algorithm. Our model possesses theoretical
superiority to some existing models, with a sharper reconstruction bound for certain
scenarios where the number of measurements is limited, and the measurement noise
level is high. In regard to the information-based situation, our model addresses the
challenge of incomplete and inaccurate measurements and enables accurate signal
reconstruction with limited data.

In Chapter 7, we extend our newly proposed penalty and the corresponding
compressed sensing theory from Chapter 6 to image reconstruction. We base our ap-
proach on the observation that natural images typically have (approximately) sparse
gradients. We propose the enhanced TV regularization, and we explain, from the
perspective of PDEs, that the enhanced term corresponds to introducing a backward
diffusion term for deblurring. As the gradient transform is not orthonormal, the
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compressed sensing approach used in Chapter 6 cannot be applied to our image re-
construction model. However, since images are also sparse under some wavelet trans-
forms, we establish a reconstruction theory for the enhanced TV model. In regard
to the information-based situation, we show that under weaker restricted isometry
property conditions, the enhanced TV minimization model has tighter reconstruc-
tion error bounds than various TV-based models when the amount of measurements
is limited, and the level of noise is significant. Particularly, for variable-density sam-
pled Fourier measurements, we show that the minimum number of measurements
required for the enhanced TV model is approximately 30.86% of that established in
[123] for the TV model.

In Chapter 8, we provide a chapter-wise conclusion on this thesis and discuss
how deep learning can be engaged in exploring high-dimensional numerical analysis.

The overall organization of these chapters as well as their logical dependency is
illustrated in the following chart. Chapters 2–5 and Chapters 7–8 serve as two inde-
pendent part. The reader interested in approximation theory can consult Chapters
2–4. For the PDE results in Chapter 5, Chapters 2 and 4 provide approximation
backgrounds. The reader interested in compressed sensing and imaging can directly
start from Chapter 6.

Chapter 1

Chapter 2 Chapter 3 Chapter 6

Chapter 7Chapter 4

Chapter 5

Chapter 8

︸ ︷︷ ︸
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Chapter 2

On the quadrature exactness of
hyperinterpolation

This chapter investigates the role of quadrature exactness in the approximation
scheme of hyperinterpolation. Constructing a hyperinterpolant of degree n requires a
positive-weight quadrature rule with exactness degree 2n. We examine the behavior
of such approximation when the required exactness degree 2n is relaxed to n + k

with 0 < k ≤ n. Aided by the Marcinkiewicz–Zygmund inequality, we affirm that
the L2 norm of the exactness-relaxing hyperinterpolation operator is bounded by a
constant independent of n, and this approximation scheme is convergent as n→∞
if k is positively correlated to n. Thus, the family of candidate quadrature rules
for constructing hyperinterpolants can be significantly enriched, and the number
of quadrature points can be considerably reduced. As a potential cost, this relax-
ation may slow the convergence rate of hyperinterpolation in terms of the reduced
degrees of quadrature exactness. Our theoretical results are asserted by numerical
experiments on three of the best-known quadrature rules: the Gauss quadrature, the
Clenshaw–Curtis quadrature, and the spherical t-designs.

2.1 Introduction

Let Ω be a bounded region of Rd with measure dω, which is either the closure of a
connected open domain, or a smooth closed lower-dimensional manifold in Rd. This
region is assumed to have finite measure with respect to dω, that is,∫

Ω
dω = V <∞.
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Let the space Lp(Ω) be equipped with the usual Lp norm ‖ · ‖p for 1 ≤ p ≤ ∞, that
is, for g ∈ Lp(Ω),

‖g‖p :=


(∫

Ω |g|
pdω

)1/p
, 1 ≤ p <∞,

ess supx∈Ω |g(x)|, p =∞.

The space C(Ω) of continuous functions is also equipped with the L∞ norm. In
particular, Lp(Ω) is a Hilbert space when p = 2, with the L2 inner product defined
as (1.2.1). This inner product also induces the L2 norm, that is, ‖g‖2 =

√
〈g, g〉 for

g ∈ L2(Ω).

Recall that a hyperinterpolation of degree n, defined as (1.2.5), is a discrete
approximation of the L2 orthogonal projection (1.2.2) that approximates continu-
ous functions with polynomials in the space Pn of polynomials of degree at most
n, introduced by Ian H. Sloan in [196] for his curiosity on whether interpolation
has properties as good as those of the L2 orthogonal projection. The discretization
is achieved by evaluating the orthogonal coefficients (in terms of inner products)
by some quadrature rules (1.2.3). The exactness degree 2n of the quadrature rule
(1.2.3) is a central assumption in constructing hyperinterpolants. Moreover, if one
considers hyperinterpolation on some regions where quadrature theory has not been
well established, this exactness assumption has also potentially spurred the devel-
opment of quadrature theory and orthogonal polynomials on these regions. Indeed,
quadrature exactness contributes to the standard principle for designing quadrature
rules: they should be exact for a certain class of integrands, e.g., polynomials under
a fixed degree. This exactness principle is the departing point of most discussions on
quadrature. Still, there has been growing concern recently about whether this prin-
ciple is reliable in designing quadrature rules, as discussed by Trefethen in [222]. The
main message of [222] is that the exactness principle proves to be an unreliable guide
to actual accuracy. According to Trefethen, the exactness principle is a matter of
algebra, concerned with whether or not certain quantities are exactly zero; however,
quadrature is a problem of analysis, focusing on whether or not certain quantities
are small. Thus, we are intrigued to know whether the required exactness degree 2n

in constructing hyperinterpolants of degree n is superfluous.

This question is answered as the main results of this chapter: When 2n is
relaxed to n + k, where 0 < k ≤ n, i.e., reduced at least to n + 1, the norm of
Ln as an operator from C(Ω) to L2(Ω) is bounded by some constant, and the error
estimate ‖Lnf − f‖2 is bounded in terms of Ek(f), which is the best uniform error
of f by a polynomial in Pk. In addition, if k is positively correlated to n, then
the scheme of hyperinterpolation is convergent as n → ∞. This relaxation helps
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hyperinterpolation to get rid of the disadvantage that, remarked by Hesse and Sloan
in [110], it needs function values at the given points of the positive-weight quadrature
rule with exactness degree 2n. In real-world applications, data sampling may be
expensive. This relaxation may enlighten us to develop hyperinterpolation-based
methods for problems that are in favor of a high-order approximation but against
extensive data sampling. When data sampling is cheap, this relaxation may also help
to speed up our computation.

We note that the generalized hyperinterpolation [67, 178], defined on the sphere,
only requires a positive-weight quadrature rule with exactness degree n + 1 rather
than 2n. However, the definition of this scheme is different from that of the original
hyperinterpolation. In this chapter, we focus on the original hyperinterpolation and
investigate the effects of relaxing the quadrature exactness. Moreover, our investiga-
tion pertains to a general region Ω, while the generalized hyperinterpolation is only
studied on the sphere.

In the next section, we present the main theoretical results on the exactness-
relaxing hyperinterpolation, with the proof of our main Theorem 2.2.8 given in Sec-
tion 2.3. To verify our theory, we conduct some numerical experiments on the interval
[−1, 1] and the unit sphere S2 in Section 2.4.

2.2 Hyperinterpolation with exactness-relaxing quadra-
ture rules

The hyperinterpolation of degree n with an exactness-relaxing quadrature rule is
defined as follows.

Assumption 2.2.1 The m-point quadrature rule (1.2.3), with nodes xj ∈ Ω and
weights wj > 0 for j = 1, 2, . . . ,m, has exactness degree n+ k with 0 < k ≤ n, where
n, k ∈ N.

Definition 2.2.2 Let 〈·, ·〉m be an m-point quadrature rule fulfilling Assumption
2.2.1 and {p`}dn`=1 ⊂ Pn be an orthonormal basis of Pn. Given f ∈ C(Ω), the hyper-
interpolant of degree n to f is defined as

Lnf :=

dn∑
`=1

〈f, p`〉mp`. (2.2.1)

This scheme (2.2.1) is essentially the hyperinterpolation scheme (1.2.5), except that
the degree of quadrature exactness is relaxed. Thus the scheme (2.2.1) is also a
discrete version of the orthogonal projection from C(Ω) onto Pn with respect to the
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L2 inner product (1.2.1). To tell the difference between schemes (1.2.5) and (2.2.1),
we refer to Sloan’s hyperinterpolation as the original hyperinterpolation. We denote
by LS

n the original hyperinterpolation operator in the following texts, where S stands
for Sloan.

What kind of benefits and costs does the relaxation of quadrature exactness
bring to the analysis and implementation of hyperinterpolation? Here is an imme-
diate benefit. We know that an m-point quadrature rule with exactness degree 2n

requires m ≥ dn quadrature points, see [196, Lemma 2], and such a quadrature rule
is said to be minimal if m = dn. This fact suggests that m should satisfy m ≥ dn

for LS
n, and it also admits the following rather simple but interesting theorem.

Theorem 2.2.3 The number of quadrature points for the hyperinterpolation (2.2.1)
satisfies

m ≥

d(n+k)/2 = d(n+k)/2, when n+ k is even,

d(n+k+1)/2 = d(n+k+1)/2, when n+ k is odd.

The benefit brought by the theorem is two-fold. On the one hand, for minimal
quadrature rules used in constructing hyperinterpolants, the required amount of
quadrature points can be considerably reduced from dn to d(n+k)/2 or d(n+k+1)/2,
depending on the parity of n + k. Such reduction is more pronounced in higher-
dimensional regions. On the other hand, for quadrature rules demanding more nodes
to achieve the exactness degree 2n, which used to be deemed impractical, some
of them can be added into the family of candidate quadrature rules to construct
hyperinterpolants efficiently. For example, a typical choice of quadrature rules for
hyperinterpolation on [−1, 1] is the Gaussian quadrature, and now the Clenshaw–
Curtis quadrature can also be considered a good choice; see more details in Section
2.4.

Obviously, such relaxation is not cost-free. The original hyperinterpolant (1.2.5)
is a projection for f ∈ Pn, that is, LS

nf = f for all f ∈ Pn; see [196, Lemma 4].
However, due to the loss of some exactness degrees, this property is preserved only
for polynomials of degree at most k, asserted by the following lemma.

Lemma 2.2.4 If f ∈ Pk, then Ln defined in Definition 2.2.2 admits Lnf = f .

Proof. For f ∈ Pk, it may be expressed as

f =

dk∑
`=1

a`p`,
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where a` =
∫

Ω fp`dω and dk = dimPk. The exactness degree n+k admits 〈p`′ , p`〉m =

δ``′ for 1 ≤ `′ ≤ dk and 1 ≤ ` ≤ dn. Thus,

Lnf =

dn∑
`=1

〈
dk∑
`′=1

a`′p`′ , p`

〉
m

p` =

dn∑
`=1

(
dk∑
`′=1

a`′ 〈p`′ , p`〉m

)
p` =

dk∑
`=1

a`p`,

leading to Lnf = f . �

Corollary 2.2.5 For f ∈ C(Ω), we have

Ln(Lkf) = Lk(Lnf) = Lk(Lkf) = Lkf.

Proof. As Lkf ∈ Pk, Lemma 2.2.4 immediately implies Ln(Lkf) = Lkf . Similar
to the proof of Lemma 2.2.4, we have

Lk(Lnf) =

dk∑
`=1

〈
dn∑
`′=1

〈f, p`′〉mp`′ , p`

〉
m

p` =

dk∑
`=1

(
dn∑
`′=1

〈f, p`′〉m〈p`′ , p`〉m

)
p`

=

dk∑
`=1

〈f, p`〉mp` = Lkf,

and similarly,

Lk(Lkf) =

dk∑
`=1

(
dk∑
`′=1

〈f, p`′〉m〈p`′ , p`〉m

)
p` =

dk∑
`=1

〈f, p`〉mp` = Lkf.

Thus, the corollary is completely proved. �

Remark 2.2.6 Lemma 2.2.4 indicates that the exactness degree 2n can be relaxed
at least to n+ 1; otherwise, the projection property Lnf = f for all f ∈ Pk does not
maintain for any non-trivial polynomial spaces.

Remark 2.2.7 There may be an illusion that for the exactness-relaxing hyperinter-
polation (2.2.1), there holds Lnf = f for f ∈ Pb(n+k)/2c, induced from the fact that
for LS

n with exactness degree 2n, LS
nf = f for all f ∈ Pn. However, according to the

proof of Lemma 2.2.4, this is not true. Indeed, 〈p`′ , p`〉m with exactness degree n+ k

may not be the Kronecker δ``′ for p`′ ∈ Pb(n+k)/2c and p` ∈ Pn.

This decay of projection-maintaining degrees is followed by Theorem 2.2.8 below,
indicating that the convergence rate of LS

n is slowed from En(f) to Ek(f). It was
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proved in [196] that
‖LS

nf‖2 ≤ V 1/2‖f‖∞ (2.2.2)

and
‖LS

nf − f‖2 ≤ 2V 1/2En(f). (2.2.3)

To tell the difference between the stability result (2.2.2) of LS
n and that of Ln,

we note that the stability result (2.2.2) stems from

‖LS
nf‖22 + 〈f − LS

nf, f − LS
nf〉m′ = 〈f, f〉m′ =

m∑
j=1

wjf(xj)
2 ≤ V ‖f‖2∞

and the non-negativeness of 〈f −LS
nf, f −LS

nf〉m′ , where 〈·, ·〉m′ denotes an m-point
quadrature rule (1.2.3) with exactness degree 2n and this notation is only used here;
see the proof in [196]. However, due to the relaxation of exactness degrees, we can
only claim

‖Lnf‖22 + 〈f − Lnf, f − Lnf〉m + σn,k,f = 〈f, f〉m,

where

σn,k,f = 〈Lnf − Lkf,Lnf − Lkf〉 − 〈Lnf − Lkf,Lnf − Lkf〉m (2.2.4)

stands for the error in evaluating the integral of (Lnf −Lkf)2 over Ω by the quadra-
ture rule (1.2.3) with exactness degree n+ k; see the equation (2.3.8) in our proof in
the next section. Even though it is possible (and often occurs) that

〈f − Lnf, f − Lnf〉m + σn,k,f ≥ 0

if the quadrature rule (1.2.3) converges fast enough, we cannot make such a claim
rigorously in general. Therefore, it is natural to endow the quadrature rule (1.2.3)
with some convergence property.

We assume that there exists an η ∈ [0, 1), which is independent of n and χ, such
that ∣∣∣∣∣∣

m∑
j=1

wjχ(xj)
2 −

∫
Ω
χ2dω

∣∣∣∣∣∣ ≤ η
∫

Ω
χ2dω ∀χ ∈ Pn. (2.2.5)

If k = n, i.e., the quadrature exactness is not relaxed, then η = 0. This conver-
gence property (2.2.5) can be regarded as the Marcinkiewicz–Zygmund inequality
[89, 143, 146] applied to polynomials of degree at most 2n, and we refer to it as the
Marcinkiewicz–Zygmund property below. From the expression (2.2.4) of σn,k,f we
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immediately observe that the Marcinkiewicz–Zygmund property (2.2.5) suffices to
bound |σn,k,f |.

Theorem 2.2.8 Given f ∈ C(Ω), let Lnf ∈ Pn be defined by (2.2.1), where the
m-point quadrature rule (1.2.3) not only fulfills Assumption 2.2.1 with 0 < k ≤ n but
also has the Marcinkiewicz–Zygmund property (2.2.5) with η ∈ [0, 1). Then

‖Lnf‖2 ≤
V 1/2

√
1− η

‖f‖∞ (2.2.6)

and
‖Lnf − f‖2 ≤

(
1√

1− η
+ 1

)
V 1/2Ek(f). (2.2.7)

The hyperinterpolant Lnf may not converge to f as n → ∞ if k is fixed. If k is
additionally positively correlated to n, then

‖Lnf − f‖2 → 0 as n→∞. (2.2.8)

Remark 2.2.9 By “k is additionally positively correlated to n,” we mean that n→
∞ implies k →∞. This condition ensures the convergence result (2.2.8) as n→∞.
The converse statement that k → ∞ implies n → ∞ automatically holds because
k ≤ n.

Remark 2.2.10 If k = n, i.e., the degree of quadrature exactness is not relaxed,
then the stability result (2.2.6), the error estimate (2.2.7), and the convergence result
(2.2.8) are the same as those for LS

n in [196]. If 0 < k < n, then as a cost of the
relaxation of exactness, the error estimation (2.2.7) is now controlled by Ek(f) rather
than En(f). Since Ek(f) ≥ En(f) if k < n, this estimation (2.2.7) reveals an effect
of relaxing the quadrature exactness. That is, we can use fewer quadrature points
than the original hyperinterpolation, but the corresponding error estimation will be
somewhat amplified. Moreover, if k ≤ 0, i.e., the degree of quadrature exactness is
relaxed to n or even less, then no convergence information can be offered by Theorem
2.2.8.

An immediate application of Theorem 2.2.8 is to a generalization of the method
of “product integration”, see discussions in [196]. In this method, the integral over
Ω of the form

∫
Ω hfdω, where f is smooth and h contains any singularities in the

product integrand, is approximated by

∫
Ω
hfdω ≈

∫
Ω
h(Lnf)dω =

dn∑
`=1

〈f, p`〉m
∫

Ω
hp`dω =

m∑
j=1

Wjf(xj), (2.2.9)
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where

Wj = wj

dn∑
`=1

p`(xj)

∫
Ω
hp`dω, j = 1, 2, . . . ,m. (2.2.10)

Applying the Cauchy–Schwarz inequality over Ω to
∫

Ω h(Lnf −f)dω, Theorem 2.2.8
immediately implies the following result.

Corollary 2.2.11 Let h be measurable on Ω with respect to dω and satisfy ‖h‖2 <
∞, and let {Wj}mj=1 be given by (2.2.10). Under the conditions of Theorem 2.2.8,
the approximation error of

∫
Ω hfdω in terms of (2.2.9) is estimated by∣∣∣∣∣∣

m∑
j=1

Wjf(xj)−
∫

Ω
hfdω

∣∣∣∣∣∣ ≤
(

1√
1− η

+ 1

)
‖h‖2V 1/2Ek(f).

A further discussion on hyperinterpolation and the product-integration method will
be given in Chapter 3.

Remark 2.2.12 In the light of Theorem 2.2.8, we expect that the required exactness
degree in constructing other variants of hyperinterpolants, such as filtered hyperinter-
polants [205] and Lasso hyperinterpolants [9], can also be reduced, and corresponding
theory can be developed.

2.3 Proof of the main theorem

2.3.1 Preparation

The hyperinterpolant Lnf can be decomposed into

Lnf := Lkf + (Ln − Lk)f, (2.3.1)

where Ln − Lk : C(Ω)→ Pn is a linear operator mapping f ∈ C(Ω) to

(Ln − Lk)f :=

dn∑
`=dk+1

〈f, p`〉mp`.

In the following proof of Theorem 2.2.8, we shall treat Lkf and (Ln−Lk)f separately.
For the former component, the degree n+ k ≥ 2k of quadrature exactness leads to

〈Lkf,Lkf〉 = 〈Lkf,Lkf〉m. (2.3.2)
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For the latter component, the orthogonality of {p`} renders

〈(Ln − Lk)f, (Ln − Lk)f〉 =

dn∑
`=dk+1

〈f, p`〉2m = 〈f, (Ln − Lk)f〉m. (2.3.3)

Before proving Theorem 2.2.8, we present a lemma involving 〈Lkf,Lkf〉m and
〈f, (Ln − Lk)f〉m.

Lemma 2.3.1 Adopt the conditions of Theorem 2.2.8. Let Lk : C(Ω) → Pk be
the hyperinterpolation operator of degree k, defined with an m-point quadrature with
exactness degree n+ k. Then

(a) 〈f − Lkf, χ〉m = 0 and 〈f − Lnf, χ〉m = 0 for all χ ∈ Pk,

(b) 〈Lkf,Lkf〉m + 〈f − Lkf, f − Lkf〉m = 〈f, f〉m,

(c) 〈Lkf,Lkf〉m + 〈Lnf − Lkf,Lnf − Lkf〉m = 〈Lnf,Lnf〉m,

(d) 〈f −Lnf, f −Lnf〉m + 2〈f,Lnf −Lkf〉m = 〈f −Lkf, f −Lkf〉m + 〈Lnf −
Lkf,Lnf − Lkf〉m.

Proof. (a) Note that any χ ∈ Pk can be expressed as χ =
∑dk

`=1 a`p`, where
a` =

∫
Ω χp`dω. The first equation holds since

〈f − Lkf, χ〉m =

dk∑
`=1

a`

〈
f −

dk∑
`′=1

〈f, p`′〉mp`′ , p`

〉
m

=

dk∑
`=1

a`

(
〈f, p`〉m −

dk∑
`′=1

〈f, p`′〉m〈p`′ , p`〉m

)
= 0.

Similarly,

〈f − Lnf, χ〉m =

dk∑
`=1

a`

(
〈f, p`〉m −

dn∑
`′=1

〈f, p`′〉m〈p`′ , p`〉m

)
= 0.

(b) Letting χ = Lkf , the first equation in statement (a) implies 〈Lkf,Lkf〉m =

〈f,Lkf〉m. Thus

〈Lkf,Lkf〉m + 〈f − Lkf, f − Lkf〉m
=2〈Lkf,Lkf〉m − 2〈f,Lkf〉m + 〈f, f〉m
=〈f, f〉m.
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(c) Letting χ = Lkf in both equations in statement (a), we have

〈Lkf,Lkf〉m = 〈f,Lkf〉m = 〈Lnf,Lkf〉m.

Thus

〈Lkf,Lkf〉m + 〈Lnf − Lkf,Lnf − Lkf〉m
=2〈Lkf,Lkf〉m − 2〈Lnf,Lkf〉m + 〈Lnf,Lnf〉m
=〈Lnf,Lnf〉m.

(d) It is immediate that

〈g − Lng, g − Lng〉m = 〈g, g〉m − 2〈g,Lng〉m + 〈Lng,Lng〉m (2.3.4)

holds for any g ∈ C(Ω). Lemma 2.2.4 implies Ln(Lkf) = Lkf . Then replacing g by
f − Lkf , the left-hand side of (2.3.4) becomes

〈f − Lkf − Ln(f − Lkf), f − Lkf − Ln(f − Lkf)〉m
=〈f − Lkf − Lnf + Lkf, f − Lkf − Lnf + Lkf〉m
=〈f − Lnf, f − Lnf〉m,

and three terms on the right-hand side becomes 〈g, g〉m = 〈f − Lkf, f − Lkf〉m,

−2〈g,Lng〉m =− 2〈f − Lkf,Ln(f − Lkf)〉m
=− 2〈f − Lkf,Lnf − Lkf〉m
=− 2〈f,Lnf − Lkf〉m,

(2.3.5)

and

〈Lng,Lng〉m =〈Ln(f − Lkf),Ln(f − Lkf)〉m
=〈Lnf − Lkf,Lnf − Lkf〉m,

respectively, where the last step in (2.3.5) holds since the orthogonality of {p`}dn`=1

and the quadrature exactness degree n + k imply 〈p`, p`′〉m = 0 for ` = 1, 2, . . . , dk

and `′ = dk + 1, . . . , dn, and then

〈Lkf, (Ln − Lk)f〉m =

〈
dk∑
`=1

〈f, p`〉mp`,
dn∑

`′=dk+1

〈f, p`′〉mp`′
〉
m

= 0. (2.3.6)

Hence, the equality (2.3.4) suggests the proof of statement (d). �
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2.3.2 Proof of Theorem 2.2.8

Now we are prepared to prove Theorem 2.2.8.

Proof of Theorem 2.2.8. According to the decomposition (2.3.1), we have

‖Lnf‖22 =〈Lnf,Lnf〉 = 〈Lkf + (Ln − Lk)f,Lkf + (Ln − Lk)f〉

=〈Lkf,Lkf〉+ 〈(Ln − Lk)f, (Ln − Lk)f〉,

where the last step holds since 〈Lkf, (Ln−Lk)f〉 = 0, which can be proved similarly
to (2.3.6) and using the fact that 〈p`, p`′〉 = 0 for ` = 1, 2, . . . , dk and `′ = dk +

1, . . . , dn. The observations (2.3.2) and (2.3.3) then lead to

‖Lnf‖22 = 〈Lkf,Lkf〉m + 〈f, (Ln − Lk)f〉m.

To derive the stability result (2.2.6), summing up the equations in Lemma
2.3.1(b,c,d), after easy computations, we have

2〈Lkf,Lkf〉m + 2〈f, (Ln − Lk)f〉m + 〈f − Lnf, f − Lnf〉m
=〈f, f〉m + 〈Lnf,Lnf〉m.

(2.3.7)

Recalling the expression (2.2.4) of

σn,k,f = 〈Lnf − Lkf,Lnf − Lkf〉 − 〈Lnf − Lkf,Lnf − Lkf〉m

and the observation (2.3.3), we have

〈f, (Ln − Lk)f〉m =〈Lnf − Lkf,Lnf − Lkf〉

=〈Lnf − Lkf,Lnf − Lkf〉m + σn,k,f .

Together with statement (c) of Lemma 2.3.1, we have

〈Lnf,Lnf〉m = 〈Lkf,Lkf〉m + 〈Lnf − Lkf,Lnf − Lkf〉m
= 〈Lkf,Lkf〉m + 〈f, (Ln − Lk)f〉m − σn,k,f .

Thus, replacing a sum of 〈Lkf,Lkf〉m + 〈f, (Ln − Lk)f〉m on the left-hand side of
(2.3.7) with 〈Lnf,Lnf〉m + σn,k,f gives

〈Lkf,Lkf〉m + 〈f, (Ln − Lk)f〉m + σn,k,f + 〈f − Lnf, f − Lnf〉m
= 〈f, f〉m.

(2.3.8)

As σn,k,f stands for the error in evaluating the integral of (Lnf − Lkf)2 over Ω by
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the quadrature rule (1.2.3) with exactness degree n+k, the Marcinkiewicz–Zygmund
property (2.2.5) implies

|σn,k,f | ≤ η〈Lnf − Lkf,Lnf − Lkf〉 = η〈f, (Ln − Lk)f〉m.

Thus, together with the non-negativeness of 〈f − Lnf, f − Lnf〉m, the expression
(2.3.8) leads to

〈Lkf,Lkf〉m + (1− η)〈f, (Ln − Lk)f〉m ≤ 〈f, f〉m,

that is,

〈f, (Ln − Lk)f〉m ≤
1

1− η
(〈f, f〉m − 〈Lkf,Lkf〉m) .

Hence, we have

‖Lnf‖22 =〈Lkf,Lkf〉m + 〈f, (Ln − Lk)f〉m

≤ 1

1− η
〈f, f〉m −

η

1− η
〈Lkf,Lkf〉m

≤ 1

1− η
〈f, f〉m,

and the stability result (2.2.6) follows from

〈f, f〉m =
m∑
j=1

wjf(xj)
2 ≤

m∑
j=1

wj‖f‖2∞ = V ‖f‖2∞.

The error bound (2.2.7) can be derived from a standard argument. For any
χ ∈ Pk, with the aid of Lemma 2.2.4, there holds

Lnf − f = Ln(f − χ)− (f − χ).

Using the stability result (2.2.6), we have

‖Lnf − f‖2 = ‖Ln(f − χ)− (f − χ)‖2 ≤ ‖Ln(f − χ)‖2 + ‖f − χ‖2

≤ V 1/2

√
1− η

‖f − χ‖∞ + V 1/2‖f − χ‖∞

=

(
1√

1− η
+ 1

)
V 1/2‖f − χ‖∞.
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This estimate implies, as it holds for all χ ∈ Pk, that

‖Lnf − f‖2 ≤
(

1√
1− η

+ 1

)
V 1/2 inf

χ∈Pk
‖f − χ‖∞

=

(
1√

1− η
+ 1

)
V 1/2Ek(f).

If k is fixed, then Ek(f) is fixed, suggesting that no convergence result of Lnf
as n → ∞ can be concluded. On the other hand, if k is positively correlated to n,
then Ek(f)→ 0 and hence ‖Lnf − f‖2 → 0 as n→∞. �

2.4 Examples and numerical experiments

We now apply Theorem 2.2.8 to two regions: the interval [−1, 1] ⊂ R and the 2-
sphere S2 ⊂ R3. For the simplicity of the narrative, we assume that the following
mentioned quadrature rules have the Marcinkiewicz–Zygmund property (2.2.5) with
η = 3/4, a quite loose assumption for η ∈ [0, 1). All codes were written by MATLAB
R2022a, and all numerical experiments were conducted on a laptop (16 GB RAM,
Intel® CoreTM i7-9750H Processor) with macOS Monterey 12.4.

2.4.1 On the interval

Let Ω = [−1, 1] with dω = ω(x)dx, where ω(x) ≥ 0 is a weight function on [−1, 1]

and different ω(x) leads to different value of V =
∫ 1
−1 ω(x)dx. The space Pn is a

linear space of polynomials of degree at most n on [−1, 1], hence dn = n+ 1.

In the following example, we consider ω(x) = 1 (thus V = 2), and quadra-
ture rules with such weight function include the Gauss–Legendre quadrature and
the Clenshaw–Curtis quadrature. We refer the reader to [222] for background in-
formation about quadrature rules on [−1, 1]. The Gauss–Legendre quadrature rule
is a typical choice of quadrature rules for the original hyperinterpolation LS

n, as
an m-point Gauss–Legendre quadrature has exactness degree 2m − 1. For effec-
tive testing of Gaussian quadrature rules, we refer the reader to [96]. Thus, an
(n + 1)-point Gauss–Legendre quadrature can fulfill the exactness requirement 2n

of LS
n. Meanwhile, the Clenshaw–Curtis quadrature [62] in the Chebyshev points,

which has exactness degree m − 1 if m quadrature points are adopted, is not con-
sidered practical in constructing the original hyperinterpolants. Indeed, one needs a
(2n+1)-point Clenshaw–Curtis quadrature to construct an original hyperinterpolant
LS
nf . However, in the light of Theorem 2.2.8, we have the following corollary.
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Corollary 2.4.1 Let 〈·, ·〉m used in Definition 2.2.2 be an m-point Gauss-Legendre
quadrature with (n+2)/2 ≤ m ≤ (2n+1)/2, or an m-point Clenshaw–Curtis quadra-
ture with n+ 2 ≤ m ≤ 2n+ 1. Under the conditions of Theorem 2.2.8 with η = 3/4,
the exactness-relaxing hyperinterpolant Lnf satisfies

‖Lnf − f‖2 ≤

3V 1/2E2m−1−n(f) when using the Gauss–Legendre quadrature,

3V 1/2Em−1−n(f) when using the Clenshaw–Curtis quadrature.

It is worth noting that the m-point Newton–Cotes quadrature in the equispaced
points with n + 2 ≤ m ≤ 2n + 1, though having exactness degree exceeding n + 1,
fails to fulfill the assumption of positive weights, as the Newton–Cotes weights have
alternating signs. However, this does not suggest the impossibility of constructing
hyperinterpolants in the equispaced points. Quadrature rules with exactness n + k

in the equispaced points, even in the scattered points, can be designed in the spirit
of optimal recovery rather than the exactness principle. As suggested in [70], given
m distinct points {xj}mj=1, one can design a quadrature with exactness degree n+ k

by obtaining its quadrature weights {wj}mj=1 from solving

min
w1,w2,...,wm

m∑
j=1

|wj | s.t.
m∑
j=1

wjv(xj) =

∫ 1

−1
v ∀v ∈ Pn+k. (2.4.1)

In general, the number m of quadrature points in the rule (2.4.1) should be much
larger than the exactness-oriented quadrature rules to achieve the exactness degree
n + k. For example, to design an m-equispaced-point quadrature with exactness
degree n+ k in the spirit of (2.4.1), m, n, and k shall satisfy n+ k = O(

√
m lnm),

see [70, Theorem 3.6]. Thus, we have the following result.

Corollary 2.4.2 Let 〈·, ·〉m used in Definition 2.2.2 be an m-point quadrature de-
signed by (2.4.1), where the quadrature points are equispaced points on [−1, 1], and
the weights should be positive. Under the conditions of Theorem 2.2.8 with η = 3/4,
the error of the exactness-relaxing hyperinterpolant Lnf is controlled by

‖Lnf − f‖2 ≤ 3V 1/2Ek(f).

We present a toy example on the interval [−1, 1] to illustrate Theorem 2.2.8 on
Ω = [−1, 1]. We are interested in a 40-degree hyperinterpolant L40f of f = exp(−x2)

and f = |x|5/2, with {p`}41
`=1 chosen as normalized Legendre polynomials {P`}40

`=0.
The former test function f = exp(−x2) is an analytic function (so smooth enough)
and the latter f = |x|5/2 is only continuous (not even differentiable).
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Constructing LS
40f requires a quadrature rule with exactness degree 80, thus one

may consider a 41-point Gauss quadrature with exactness degree 81. Besides, we also
construct L40f using a 25-point Gauss-Legendre quadrature, a 50-point Clenshaw–
Curtis quadrature, and a 186-point quadrature (2.4.1) in equispaced points with
exactness degree 49. These quadrature rules all have the exactness degree 49, which
is far from the required degree 80 for LS

40f , but they also enable us to obtain hy-
perinterpolants with considerably small errors. On the other hand, the relaxation
of quadrature exactness, suggested in Theorem 2.2.8, slows the convergence rates of
hyperinterpolants. That is, the L2 error estimation of LS

40f is controlled by E40(f),
suggested by the estimation (2.2.3) derived in Sloan’s original work [196], while that
of L40f is controlled by E9(f), according to our error estimation (2.2.7).

The performance of L40f in the approximation of both functions is displayed
in Figures 2.1 and 2.2, respectively. Our theoretical analysis of the effects of the
relaxing quadrature exactness is also verified in both figures. Besides, the numerical
results suggest that such effects may also be related to the smoothness of functions
to be approximated. That is, the error of LS

40f is much smaller than the errors of
L40f using three different quadrature rules for the analytic function f = exp(−x2),
but just slightly smaller than those for the non-differentiable function f = |x|5/2.
Moreover, it is pretty interesting that the hyperinterpolant L40f with the 50-point
Clenshaw–Curtis quadrature performs better than that using the 25-point Gauss–
Legendre quadrature and the 186-point quadrature (2.4.1) in equispaced points,
though three quadrature rules have the same exactness degree 49. This finding is
worthy of further study. To the authors’ best knowledge, the connection between the
Clenshaw–Curtis quadrature and the performance of hyperinterpolation has not been
established. Some possibly useful results that help us to establish such a connection
can be found in Trefethen’s famous paper [220].

2.4.2 On the sphere

Let Ω = S2 ⊂ R3 with dω = ω(x)dx, where ω(x) is an area measure on S2. Thus
V =

∫
S2 dω = 4π denotes the surface area of S2. In this example, Pn can be regarded

as the space of spherical polynomials of degree at most n. Let the basis {p`}dn`=1 be
a set of orthonormal spherical harmonics {Y`,k : ` = 0, 1, . . . , n, k = 1, . . . , 2` + 1} ,
and the dimension of Pn is dn = (n + 1)2. Many positive-weight quadrature rules
can achieve the desired exactness degree, such as rules using spherical t-designs
[69] and tensor-product quadrature rules from rules on the interval [202], which are
both designed on structural quadrature points. Thanks to the work of Mhaskar,
Narcowich, and Ward [146], it was also proved that positive-weight quadrature rules
with desired polynomial exactness could be designed from scattered data. All of
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Figure 2.1: Hyperinterpolants LS
40f and L40f of f = exp(−x2), constructed by

various quadrature rules. The estimation of ‖LS
40f − f‖2 is controlled by E40(f),

while that of ‖L40f − f‖2 by E9(f).
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Figure 2.2: Hyperinterpolants LS
40f and L40f of f = |x|5/2, constructed by various

quadrature rules. The estimation of ‖LS
40f − f‖2 is controlled by E40(f), while that

of ‖L40f − f‖2 by E9(f).
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these rules requires m = O(k2) points to achieve the exactness degree k. Thus
roughly speaking, to construct an original hyperinterpolant requires 4cn2 points,
where c > 0 is some constant, while in the light of Theorem 2.2.8, only c(n + k)2

points with 0 < k ≤ n are needed.

For the sake of easy implementation, we discuss Theorem 2.2.8 with quadrature
rules using spherical t-designs, which can be implemented easily and efficiently. A
point set {x1, x2, . . . , xm} ⊂ S2 is said to be a spherical t-design [69] if it satisfies

1

m

m∑
j=1

v(xj) =
1

4π

∫
S2
vdω ∀v ∈ Pt. (2.4.2)

It can be seen that spherical t-design is a set of points on the sphere such that an
equal-weight quadrature rule in these points integrates all (spherical) polynomials up
to degree t exactly. In this chapter, we employ well conditioned spherical t-designs
[7], which are suitable for numerical integration and interpolation. The study in [8]
revealed that well conditioned spherical t-designs can be used to realize hyperinter-
polation and regularization approximation successfully. Well conditioned spherical
t-designs require at least (t+ 1)2 quadrature points to achieve the exactness degree
t [7]. Thus, it requires at least (2n + 1)2 points to construct an original hyperin-
terpolant of degree n. However, thanks to Theorem 2.2.8, we have the following
result.

Corollary 2.4.3 Let 〈·, ·〉m used in Definition 2.2.2 be the quadrature rule (2.4.2)
using a spherical (n+k)-design with 0 < k ≤ n. The number m of quadrature points
should satisfy m ≥ (n+k+1)2. Under the conditions of Theorem 2.2.8 with η = 3/4,
the exactness-relaxing hyperinterpolant Lnf satisfies

‖Lnf − f‖2 ≤ 6π1/2Ek(f).

In particular, if the spherical (n+ k)-design with m = (n+ k + 1)2 is used, then

‖Lnf − f‖2 ≤ 6π1/2E√m−n−1(f).

We present a toy illustration on the sphere, making use of the well conditioned
spherical t-designs [7] with m = (t + 1)2. We are interested in a 25-degree hyper-
interpolant L25f of a Wendland function f : Let z1 = [1, 0, 0]T, z2 = [−1, 0, 0]T,
z3 = [0, 1, 0]T, z4 = [0,−1, 0]T, z5 = [0, 0, 1]T, and z6 = [0, 0,−1]T, the testing
function f is defined as

f(x) =

6∑
i=1

φ2(‖zi − x‖2), (2.4.3)
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where φ2(r) := φ̃2 (r/δ2) is a normalized Wendland function [60], with

φ̃2(r) := (max{1− r, 0})6 (35r2 + 18r + 3)/3

been an original Wendland function [231] and δ2 = (9Γ(5/2))/(2Γ(3)). Accord-
ing to the original definition of hyperinterpolation (1.2.5), one shall use a spherical
50-design and its corresponding quadrature rule to construct LS

25f . To tell the dif-
ference between LS

25f and L25f , we also use a sphere 30-design and its corresponding
quadrature rule to construct L25f . Both designs are displayed in Figure 2.3.

Figure 2.3: Spherical 50- and 30-designs, generated by the method proposed in [7].

The original hyperinterpolant LS
25f of the Wendland-type function (2.4.3) and

the corresponding error are plotted in the upper row of Figure 2.4. According to
Sloan [196], the L2 error estimation of LS

25f is controlled by E25(f). Corollary 2.4.3
indicates that L25f can be obtained using an exactness-relaxing quadrature rule.
This is shown in the lower row in Figure 2.4, where a sphere 30-design and its
corresponding quadrature rule are used. Corollary 2.4.3 also suggests that the L2

error estimation of L25f is thus controlled by E5(f).

Along with the Wendland-type function (2.4.3), we additionally test the function
f(x) = f(x, y, z) = |x + y + z| with x = [x, y, z]T ∈ S2. Similar to the above test,
the original hyperinterpolant LS

25f and the corresponding error are plotted in the
upper row of Figure 2.5, and the hyperinterpolant L25f and its error are shown in
the lower row of Figure 2.5. This test also validates our theory on the effects of the
relaxing quadrature exactness. Moreover, as the function f(x, y, z) = |x + y + z| is
not differentiable, similar to the non-differentiable function f(x) = |x|5/2 on [−1, 1],
we see than the error of LS

25f is just slightly smaller than that of L25f .
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Figure 2.4: Hyperinterpolants LS
25f and L25f of a Wendland-type function (2.4.3),

constructed by spherical t-designs with t = 50 (upper row) and 30 (lower row),
respectively. The estimation of ‖LS

25f − f‖2 is controlled by E25(f), while that of
‖L25f − f‖2 by E5(f).
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Figure 2.5: Hyperinterpolants LS
25f and L25f of f(x) = f(x, y, z) = |x + y + z|,

constructed by spherical t-designs with t = 50 (upper row) and 30 (lower row),
respectively. The estimation of ‖LS

25f − f‖2 is controlled by E25(f), while that of
‖L25f − f‖2 by E5(f).
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Chapter 3

Hyperinterpolation of singular and
oscillatory functions

Note: We denote by n + n′ the relaxed quadrature exactness degree in this chapter
instead of n+ k in Chapter 2.

Singular and oscillatory functions occupy pivotal positions in a wide array of
applications, and their approximation is crucial for solving applied mathematics
problems efficiently. As discussed in Chapter 2, hyperinterpolation is a discrete
projection method approximating functions with the L2 orthogonal projection coef-
ficients obtained by numerical integration. However, this approach may be inefficient
for approximating singular and oscillatory functions, requiring a large number of in-
tegration points to achieve satisfactory accuracy. To address this issue, we propose a
new approximation scheme in this chapter, called efficient hyperinterpolation, which
leverages the product-integration methods to attain the desired accuracy with fewer
numerical integration points than the original scheme. We provide theorems that
explain the superiority of efficient hyperinterpolation over the original method in
approximating such functions belonging to L1(Ω), L2(Ω), and C(Ω) spaces, respec-
tively, and demonstrate through numerical experiments on the interval and the sphere
that our approach outperforms the original method in terms of accuracy when using
a limited number of integration points.

3.1 Introduction

Recall that Ω is a bounded region of Rd, either the closure of a connected open
domain or a smooth closed lower-dimensional manifold in Rd. The region is assumed
to have finite measure with respect to a given measure dω, that is,

∫
Ω dω = V <∞.
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We are interested in the efficient numerical approximation of functions in the
form of

F (x) = K(x)f(x) (3.1.1)

by some polynomials on Ω, where K ∈ L1(Ω) is a real- or complex-valued absolutely
integrable function, which needs not be continuous or of one sign, and f ∈ C(Ω)

is a continuous (and preferably smooth) function. By efficient, we mean that a
considerably small amount of sampling points is enough for such approximation
with satisfactory accuracy. We also investigate scenarios of K ∈ L2(Ω) and C(Ω) to
refine the general (but rough) analysis for the case of K ∈ L1(Ω).

3.1.1 Sources of singular and oscillatory functions

Functions in the form of (3.1.1) frequently feature in mathematical physics and
applied mathematics [63, 101]. Some differential equations naturally have solutions
with oscillatory behaviors and singularities. For example, the fundamental solutions
of the Helmholtz equation are given by

G(x, y) =


i

4
H

(1)
0 (κ|x− y|) for x, y ∈ R2

1

4π

eiκ|x−y|

|x− y|
for x, y ∈ R3,

where |x− y| denotes the usual Euclidean distance between x and y, H(1)
0 (z) is the

Hankel function of the first kind and of order zero, and κ is known as the wave
number when the equation is applied to waves. The fundamental solution of the
biharmonic differential equation in R2 is given by

G(x, y) =
1

8π
|x− y|2 log |x− y| for x, y ∈ R2.

Another important source of singular and oscillatory functions can be found in
the study of

Y`,k(y)

|x− y|
for x, y ∈ S2

for the electromagnetic field and wave computation [15, 61, 101], where Y`,k is the
spherical harmonic of degree ` and order k.

As we can see, many fundamental solutions are functions with singularities and
oscillatory behaviors. The approximation of such functions helps us develop approx-
imation methods to solve related mathematical physics problems. Thus, designing
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an efficient method for such approximation is a fascinating area of computational
mathematics.

3.1.2 The approximation basics

A typical constructive approximation scheme of degree n for F = Kf consists of two
stages: evaluating the integrals∫

Ω
(Kf)p`dω, ` = 1, 2, . . . , dn, (3.1.2)

and then approximating F by

PnF :=

dn∑
`=1

(∫
Ω

(Kf)p`dω
)
p`. (3.1.3)

This scheme (3.1.3) is the L2 orthogonal projection (1.2.2) of F onto Pn. To link the
orthogonal projection to applications immediately, we make use of some quadrature
rules (1.2.3). With the assumption (1.2.4) of quadrature exactness

m∑
j=1

wjg(xj) =

∫
Ω
gdω ∀g ∈ P2n,

the hyperinterpolant of degree n, constructed for the approximation of F ∈ C(Ω), is
defined as

LnF :=

dn∑
`=1

〈Kf, p`〉mp`. (3.1.4)

We refer the reader to [101, 110, 128, 177, 197, 202, 203, 234] for some follow-up
works on the general analysis of hyperinterpolation and [9, 137, 149, 205] for some
variants of classical hyperinterpolation. The approximation of the form (3.1.4) using
rotationally invariant quadrature rules on the 2-sphere S2 was also investigated in
[4].

However, it is well known that if K is singular and highly oscillatory, it is
inefficient to evaluate the integrals (3.1.2) directly using some classical numerical
integration rules. Instead, one shall evaluate them in a semi-analytical way: for the
evaluation of an integral of the form∫

Ω
K(x)f(x)dω(x),
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one shall replace f by its polynomial interpolant or approximant of degree n, ex-
pressed as

f ≈
dn∑
`=1

c`p`,

and evaluate the integral by

∫
Ω
K(x)f(x)dω(x) ≈

dn∑
`=1

c`

∫
Ω
K(x)p`(x)dω(x).

This idea for numerical integration may be referred to as the product-integration
rule in the classical literature [198, 199, 200]. This rule was initially designed on
[−1, 1] for K ∈ L1[−1, 1] and f ∈ C[−1, 1], and it converges to the exact integral as
the number of quadrature points approaches the infinity if K ∈ Lp[−1, 1] for some
p > 1 is additionally assumed. In the context of highly oscillatory integrals with an
oscillatory K ∈ C(Ω), this approach is also known as the Filon-type method [90, 118].
In most of these references, f is approximated by its interpolant, and it is generally
assumed that the modified moments

∫
Ω
K(x)p`(x)dω(x), ` = 1, 2, . . . , dn (3.1.5)

can be computed accurately by using special functions or efficiently by invoking some
stable iterative procedures. Besides, f may also be replaced by its approximant. For
example, the idea of replacing f with its hyperinterpolant has emerged in the first
paper [196] on hyperinterpolation. It may be better to replace f with its hyperin-
terpolant rather than the interpolant: The L2 operator norm of hyperinterpolation
is bounded if the regional area/volume V is finite [196], but there is no guarantee of
the boundedness of the L2 operator norm of polynomial interpolation over general
regions; see a piece of evidence from [196].

In this spirit, we propose efficient hyperinterpolation, a general scheme for ap-
proximating functions in the form of (3.1.1), provided that the modified moment
(3.1.5) can be readily obtained. We approximate f by its hyperinterpolant and the
resulting scheme is defined as

SnF :=

dn∑
`=1

(∫
Ω
K(Lnf)p`dω

)
p`. (3.1.6)

Along with the classical hyperinterpolation (3.1.4), this scheme can be regarded as
another discrete approximation of the L2 orthogonal projection (3.1.3). The main
theoretical results of this chapter are the stability and error analysis for this scheme,
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and this scheme is verified to be efficient when the amount of quadrature points is
considerably small.

Although singular and oscillatory integration has been well studied in the clas-
sical literature, we found these studies were not widely linked to hyperinterpolation.
Here is a possible explanation for this gap. The required quadrature exactness de-
gree 2n for a hyperinterpolant of degree n de facto ensures a sufficient amount of
numerical integration points when n is relatively large. Thus, directly evaluating
the integrals (3.1.2) by the classical numerical integration methods may also lead to
relatively satisfactory accuracy.

In Chapter 2, we discussed what if the required exactness 2n is relaxed to n+n′,
where 0 < n′ ≤ n. This discussion provides a regime where efficient hyperinter-
polation may perform much more accurately than classical hyperinterpolation. In
particular, if K is continuous, we show that for the classical hyperinterpolation of
degree n, the approximation error is bounded as

‖LnF − F‖2 . En′(Kf),

where
En′(g) = inf

χ∈Pn′
‖g − χ‖∞

for g ∈ C(Ω); while for efficient hyperinterpolation of degree n, there holds

‖SnF − F‖2 . En′(f) + En(Kχ∗),

where χ∗ ∈ Pn′ is the best uniform approximation of f in Pn′ , that is,

‖f − χ∗‖∞ = En′(f).

Thus, the controlling term En′(Kf) is considerably greater than En′(f) and En(Kχ∗)

when n′ < n, f is smooth enough, and K is awkward enough to be approximated
by lower degree polynomials, asserting the outperformance of efficient hyperinterpo-
lation in this scenario.

The rest of this chapter is organized as follows. In the next section, we review
some results of the classical hyperinterpolation and discuss some properties of the
efficient modification. The implementation of efficient hyperinterpolation is elabo-
rated in Section 3.3. In Section 3.4, we analyze the stability and the error bound
for efficient hyperinterpolation when K ∈ L1(Ω). This analysis is refined in Section
3.5 with the assumptions that K ∈ L2(Ω) and K ∈ C(Ω). In particular, we dis-
cuss in Section 3.5.3 why the classical hyperinterpolation may be inefficient when
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approximating functions in the form of (3.1.1). In Section 3.6, we investigate effi-
cient hyperinterpolation on the interval and the sphere, respectively, and give some
numerical results.

3.2 Hyperinterpolation and efficient hyperinterpolation

Hyperinterpolation (3.1.4) uses classical numerical integration methods to evaluate
the L2 orthogonal projection coefficients (3.1.2). However, the classical methods
prove to be inefficient in the presence of a singular or an oscillatory K. Thus,
we propose efficient hyperinterpolation (3.1.6) to achieve satisfactory approximation
accuracy by using a considerably small amount of quadrature points. In this section,
we review some results of (3.1.4) and discuss some properties of (3.1.6).

3.2.1 Hyperinterpolation

As introduced, the original definition (3.1.4) of hyperinterpolants of degree n requires
an m-point quadrature rule (1.2.3) with polynomial exactness 2n [196], and this
requirement on quadrature exactness has been relaxed to n+ n′ with 0 < n′ ≤ n in
Chapter 2.

The definition (3.1.4) is also restricted to the approximation of continuous func-
tions. Thus, if K is additionally assumed to be continuous, then it was derived in
[196] that LnF defined by (3.1.4) with quadrature exactness 2n shall satisfy

‖LnF‖2 ≤ V 1/2‖F‖∞ (3.2.1)

and
‖LnF − F‖2 ≤ 2V 1/2En(F ), (3.2.2)

where
En(g) = inf

χ∈Pn
‖g − χ‖∞

denotes the best uniform approximation error of g ∈ C(Ω) by a polynomial in Pn.

Let the quadrature rule (1.2.3) have exactness degree n + n′ with 0 < n′ ≤ n,
and let it satisfy the Marcinkiewicz–Zygmund property that there exists an η ∈ [0, 1)

such that ∣∣∣∣∣∣
m∑
j=1

wjχ(xj)
2 −

∫
Ω
χ2dω

∣∣∣∣∣∣ ≤ η
∫

Ω
χ2dω ∀χ ∈ Pn, (3.2.3)

and η = 0 if n′ = n. The property (3.2.3) is referred to as the Marcinkiewicz–
Zygmund property as it can be regarded as the Marcinkiewicz–Zygmund inequality
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[89, 126, 143, 146] applied to polynomials of degree at most 2n; see [12] for more
details. If the quadrature rule (1.2.3) with exactness degree n + n′ satisfies the
Marcinkiewicz–Zygmund property (3.2.3) with η ∈ [0, 1), then it was derived in [12]
that

‖LnF‖2 ≤
V 1/2

√
1− η

‖F‖∞ (3.2.4)

and
‖LnF − F‖2 ≤

(
1√

1− η
+ 1

)
V 1/2En′(F ). (3.2.5)

For the sake of generality, we have the following assumption for the rest of this
chapter.

Assumption 3.2.1 The quadrature rule (1.2.3) has exactness degree n+n′ with 0 <

n′ ≤ n, and it satisfies the Marcinkiewicz–Zygmund property (3.2.3) with η ∈ [0, 1).

3.2.2 Properties of efficient hyperinterpolation

We then make a short discussion on the relations among the L2 orthogonal projection
Pn, hyperinterpolation Ln, and efficient hyperinterpolation Sn. Note that Pnχ = χ

for all χ ∈ Pn, while for Ln with quadrature exactness n + n′ (0 < n′ ≤ n), there
only holds Lnχ = χ for all χ ∈ Pn′ ; see [12].

It is immediately observed that the efficient hyperinterpolation (3.1.6) can be
represented in terms of the L2 orthogonal projection Pn and hyperinterpolation Ln.

Lemma 3.2.2 Let K ∈ L1(Ω) and f ∈ C(Ω). Then SnF = Pn(KLnf).

Remark 3.2.3 This observation in Lemma 3.2.2 may simplify our proofs below, but
it cannot explain the computational benefits of the efficient hyperinterpolation and
using modified moments. The aim of this chapter is to demonstrate the latter issue.

We have the following lemma on the relation between Sn and Pn.

Lemma 3.2.4 Let K ∈ L1(Ω). Then Sn(Kχ) = Pn(Kχ) for all χ ∈ Pn′ .

Proof. Note that Lnχ = χ for all χ ∈ Pn′ . Thus

Sn(Kχ) = Pn(KLnχ) = Pn(Kχ),

which proves this lemma. �

We then discuss the relation between Sn and Ln. We can see that if K = 1, i.e.,
F = f , then SnF = LnF . Indeed, with the property that Pnχ = χ for all χ ∈ Pn,
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we have
Snf = Pn(Lnf) = Lnf.

If K 6= 1, we have the following lemma.

Lemma 3.2.5 Let K ∈ L2(Ω). Then 〈KLnf − SnF, χ〉 = 0 for all χ ∈ Pn.

Proof. As SnF = Pn(KLnf), this lemma is proved by the projection property of
the orthogonal projection Pn: For any f ∈ L2(Ω),

〈Pnf − f, χ〉 = 0

for all χ ∈ Pn. �

Lemma 3.2.5 suggests that SnF is the orthogonal projection of KLnf onto Pn
as well as the following least squares property.

Theorem 3.2.6 Let K ∈ L2(Ω). Then

〈KLnf − SnF,KLnf − SnF 〉 = min
χ∈Pn
〈KLnf − χ,KLnf − χ〉.

Proof. For any χ ∈ Pn, we have

KLnf − χ = KLnf − SnF + SnF − χ,

and by Lemma 3.2.5, we have

〈KLnf − SnF,SnF − χ〉 = 0.

Thus, the Pythagorean theorem suggests

‖KLnf − SnF‖22 + ‖SnF − χ‖22 = ‖KLnf − χ‖22,

which implies
‖KLnf − SnF‖22 ≤ ‖KLnf − χ‖22

for all χ ∈ Pn and
‖KLnf − SnF‖22 = ‖KLnf − χ‖22

if χ = SnF . Hence the theorem is proved. �
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3.3 Implementation of efficient hyperinterpolation

To implement efficient hyperinterpolation (3.1.6), the key step is to evaluate its
coefficients. Note that for ` = 1, 2, . . . , dn, each coefficient

∫
Ω
K(Lnf)p`dω =

∫
Ω
K

 dn∑
`′=1

 m∑
j=1

wjf(xj)p`′(xj)

 p`′

 p`dω
=

m∑
j=1

wj

(
dn∑
`′=1

p`′(xj)

∫
Ω
Kp`′p`dω

)
f(xj)

=

m∑
j=1

Wj`f(xj),

where

Wj` := wj

(
dn∑
`′=1

p`′(xj)

∫
Ω
Kp`′p`dω

)
, j = 1, 2, . . . ,m.

Thus, the weights {Wj`} can be computed analytically or stably if one can evaluate

α`′` :=

∫
Ω
Kp`′p`dω, 1 ≤ `′, ` ≤ dn (3.3.1)

in the same manner. Note that p`′p` is another polynomial of degree n1 + n2, where
n1 := deg p`′ and n2 := deg p`. Thus, it can be expanded as

p`′p` =

dn1+n2∑
r=1

crqr,

where {qr}d2nr=1 is an orthonormal basis of P2n, which could be chosen from the same
orthogonal family of {p`} or not, and the coefficients

cr :=

∫
Ω
p`′p`qrdµ, r = 1, 2, . . . , dn1+n2 . (3.3.2)

In the expression (3.3.2), dµ is the Lebesgue–Stieltjes measure associated with µ.
Sometimes we may have

dµ(x) = µ(x)dx,

and µ(x) is referred to as the weight function of the orthogonal family {qr}.

As introduced, it is generally assumed that the modified moments

βr :=

∫
Ω
Kqrdω (3.3.3)
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can be computed by using special functions or invoking some stable iterative proce-
dures. In the implementation of efficient hyperinterpolation, we adopt this assump-
tion for r = 1, 2, . . . , d2n. Thus, the weights

Wj` = wj

dn∑
`′=1

p`′(xj)α`′` = wj

 dn∑
`′=1

p`′(xj)

dn1+n2∑
r=1

crβr

 (3.3.4)

can be computed analytically or stably for j = 1, 2, . . . ,m and ` = 1, 2, . . . , dn.

The above discussion suggests how to implement efficient hyperinterpolation
(3.1.6) in the form of

SnF =

dn∑
`=1

 m∑
j=1

Wj`f(xj)

 p`. (3.3.5)

Here is a pseudocode describing the whole procedure, which is easy to be imple-
mented.

Algorithm. Efficient hyperinterpolant (3.1.6) for the approximation
of F = Kf

Compute the modified moments (3.3.3) for r = 1, 2, . . . , d2n, save as

{βr}d2nr=1;

for ` = 1 : dn

for `′ = 1 : dn

for r = 1 : dn1+n2 % n1+n2 = degree of p`′p`

cr = 〈p`′p`, qr〉;
end

α`′` =
∑dn1+n2

r=1 crβr;

end

for j = 1 : m

Wj` = wj
∑dn

`′=1 p`′(xj)α`′`

end

end

SnF =
∑dn

`=1

(∑m
j=1Wj`f(xj)

)
p`.

3.4 Exploratory estimate: absolutely integrable kernels

We now analyze efficient hyperinterpolation for the approximation of

F = Kf
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when K ∈ L1(Ω). This case is the most general one among K ∈ L1(Ω), L2(Ω), and
C(Ω), as there holds

C(Ω) ⊂ L2(Ω) ⊂ L1(Ω)

for a bounded and closed subset Ω of Rd. As L1(Ω) does not carry any inner products,
we can only give a general but rough analysis. What’s more, since F = Kf ∈ L1(Ω),
we can only give an L1 error analysis. We shall refine our analysis in the next section
by assuming K ∈ L2(Ω) and C(Ω).

Theorem 3.4.1 Given K ∈ L1(Ω) and f ∈ C(Ω), let F = Kf and let SnF be
defined as (3.1.6), where the m-point quadrature rule (1.2.3) fulfills the Assumption
3.2.1. Then

‖SnF‖2 ≤
V 1/2An√

1− η
‖f‖∞, (3.4.1)

where

An =

√√√√ dn∑
`=1

dn∑
`′=1

α2
`′`

with α`′` defined as (3.3.1), and

‖SnF − F‖1 ≤(
V An√
1− η

+ ‖K‖1
)
En′(f) +

(
V 1/2

dn∑
`=1

‖p`‖∞ + 1

)
E(1)
n (Kχ∗),

(3.4.2)

where E(1)
n (g) := infχ∈Pn ‖g−χ‖1 and χ∗ ∈ Pn′ is the best uniform approximation of

f in Pn′.

Proof. By Parseval’s identity, we have

‖SnF‖22 =

dn∑
`=1

(∫
Ω
K(Lnf)p`dω

)2

=

dn∑
`=1

(
dn∑
`′=1

〈f, p`′〉m
∫

Ω
Kp`′p`dω

)2

.

By applying the Cauchy–Schwarz inequality and Parseval’s identity again, we have

‖SnF‖22 ≤
dn∑
`=1

(
dn∑
`′=1

〈f, p`′〉2m

)(
dn∑
`′=1

α2
`′`

)
= ‖Lnf‖22

dn∑
`=1

dn∑
`′=1

α2
`′`,

which leads to
‖SnF‖2 ≤ An‖Lnf‖2.
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By the stability result (3.2.4) with F changed to f , we have the stability result
(3.4.1). For any χ ∈ Pn′ , we have

‖SnF − F‖1 = ‖Sn(F −Kχ)− (F −Kχ) + (Sn(Kχ)−Kχ)‖1
≤ V 1/2‖Sn(F −Kχ)‖2 + ‖F −Kχ‖1 + ‖Sn(Kχ)−Kχ‖1

≤ V An√
1− η

‖f − χ‖∞ + ‖K‖1‖f − χ‖∞ + ‖Sn(Kχ)−Kχ‖1,

where the last inequality is obtained by applying the stability result (3.4.1) and
Hölder’s inequality to

F −Kχ = K(f − χ),

respectively. As the above estimate applied to an arbitrary χ ∈ Pn′ , letting χ = χ∗

gives

‖SnF − F‖1 ≤
(

V An√
1− η

+ ‖K‖1
)
En′(f) + ‖Sn(Kχ∗)−Kχ∗‖1. (3.4.3)

By Lemma 3.2.4, the term

‖Sn(Kχ∗)−Kχ∗‖1 = ‖Pn(Kχ∗)−Kχ∗‖1.

Thus for any χ ∈ Pn, we have

Pn(Kχ∗)−Kχ∗ = Pn(Kχ∗ − χ)− (Kχ∗ − χ)

and

‖Pn(Kχ∗)−Kχ∗‖1 ≤ V 1/2‖Pn(Kχ∗ − χ)‖2 + ‖Kχ∗ − χ‖1.

As for any g ∈ L1(Ω), there holds

‖Png‖2 =

(
dn∑
`=1

(∫
Ω
gp`dω

)2
)1/2

≤
dn∑
`=1

∣∣∣∣∫
Ω
gp`dω

∣∣∣∣
≤

dn∑
`=1

‖gp`‖1 ≤ ‖g‖1
dn∑
`=1

‖p`‖∞,

we have

‖Pn(Kχ∗)−Kχ∗‖1 ≤

(
V 1/2

dn∑
`=1

‖p`‖∞ + 1

)
‖Kχ∗ − χ‖1.
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Since this estimate applied to an arbitrary χ ∈ Pn, we have

‖Pn(Kχ∗)−Kχ∗‖1 ≤

(
V 1/2

dn∑
`=1

‖p`‖∞ + 1

)
E(1)
n (Kχ∗).

Together with (3.4.3), we have the error bound (3.4.2). �

3.5 Refined estimates: square-integrable and continuous
kernels

We then refine our general analysis in Section 3.4 by assuming K ∈ L2(Ω) and
C(Ω), respectively. Inner products emerge as a powerful tool in such refinement.
For example, we used the estimate

‖Png‖2 ≤ ‖g‖1
dn∑
`=1

‖p`‖∞

for g ∈ L1(Ω) in the proof of Theorem 3.4.1, but we have

‖Png‖2 ≤ ‖g‖2 ∀g ∈ L2(Ω), (3.5.1)

and
‖Png‖2 ≤ V 1/2‖g‖∞ ∀g ∈ C(Ω) (3.5.2)

with the aid of inner products. Indeed, the inequality (3.5.1) is none other than
Bessel’s inequality. By generalized Hölder’s inequality,

‖g‖2 ≤ V 1/2‖g‖∞

for g ∈ C(Ω), thus
‖Png‖2 ≤ V 1/2‖g‖∞

for g ∈ C(Ω).

3.5.1 Analysis with square-integrable kernels

When K ∈ L2(Ω), we have the following theorem.

Theorem 3.5.1 Let K ∈ L2(Ω) and adopt the rest conditions of Theorem 3.4.1.
Then

‖SnF‖2 ≤ ‖K‖2‖Ln‖∞‖f‖∞, (3.5.3)



Chapter 3. Hyperinterpolation of singular and oscillatory functions 48

where ‖Ln‖∞ denotes the norm of Ln as an operator from C(Ω) to C(Ω), and

‖SnF − F‖2 ≤ (1 + ‖Ln‖∞)‖K‖2En′(f) + 2E(2)
n (Kχ∗), (3.5.4)

where E(2)
n (g) := infχ∈Pn ‖g−χ‖2 and χ∗ ∈ Pn′ is the best uniform approximation of

f in Pn′.

Proof. Recall that SnF = Pn(KLnf). Thus, Bessel’s inequality (3.5.1) suggests

‖Snf‖2 ≤ ‖KLnf‖2.

By the generalized Hölder’s inequality,

‖SnF‖2 ≤ ‖K‖2‖Lnf‖∞ ≤ ‖K‖2‖Ln‖∞‖f‖∞.

For any χ ∈ Pn′ , we have

‖SnF − F‖2 = ‖Sn(F −Kχ)− (F −Kχ) + (Sn(Kχ)−Kχ)‖2
≤ ‖Sn(F −Kχ)‖2 + ‖F −Kχ‖2 + ‖Sn(Kχ)−Kχ‖2
≤ ‖K‖2‖Ln‖∞‖f − χ‖∞ + ‖K‖2‖f − χ‖∞ + ‖Sn(Kχ)−Kχ‖2,

where the last inequality is obtained by applying the stability (3.5.3) and generalized
Hölder’s inequality to

F −Kχ = K(f − χ),

respectively. Letting χ = χ∗ gives

‖SnF − F‖2 ≤ (‖L‖∞ + 1) ‖K‖2En′(f) + ‖Sn(Kχ∗)−Kχ∗‖2. (3.5.5)

Similar to the proof of Theorem 3.4.1, Lemma 3.2.4 implies

‖Sn(Kχ∗)−Kχ∗‖2 = ‖Pn(Kχ∗)−Kχ∗‖2.

By the estimate (3.5.1), for any χ ∈ Pn, we have

‖Pn(Kχ∗)−Kχ∗‖2 ≤ ‖Pn(Kχ∗ − χ)‖2 + ‖Kχ∗ − χ‖2
≤ 2‖Kχ∗ − χ‖2.

Since this estimate applied to an arbitrary χ ∈ Pn, we have

‖Pn(Kχ∗)−Kχ∗‖2 ≤ 2E(2)
n (Kχ∗).
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Together with (3.5.5), we have the error bound (3.5.4). �

Remark 3.5.2 For Ln with quadrature exactness 2n, some studies on ‖Ln‖∞ in
various regions can be found in [39, 40, 106, 128, 202, 203, 224]. This operator
norm awaits further investigation for Ln with quadrature exactness n+n′ (0 < n′ <

n). Nevertheless, the norm ‖Ln‖∞ cannot be uniformly bounded by any constant in
general.

Remark 3.5.3 The fact that ‖Ln‖∞ is not uniformly bounded has spurred the de-
velopment of filtered hyperinterpolation on the sphere and then on general regions
[137, 149, 205]. The filtered hyperinterpolation operator, as an operator from C(Ω)→
C(Ω), has a uniformly bounded norm. Thus, a possible future work may be the
combination of efficient and filtered hyperinterpolation so that a better result of the
approximation of F = Kf with K ∈ L2(Ω) can be expected.

3.5.2 Analysis with continuous kernels

If K is continuous, then we have the following analysis.

Theorem 3.5.4 Let K ∈ C(Ω) and adopt the rest conditions of Theorem 3.4.1.
Then

‖SnF‖2 ≤
V 1/2

√
1− η

‖K‖∞‖f‖∞, (3.5.6)

where ‖Ln‖∞ denotes the norm of Ln as an operator from C(Ω) to C(Ω), and

‖SnF − F‖2 ≤

(
V 1/2

√
1− η

‖K‖∞ + ‖K‖2

)
En′(f) + 2V 1/2En(Kχ∗), (3.5.7)

where χ∗ ∈ Pn′ is the best uniform approximation of f in Pn′.

Proof. In the proof of Theorem 3.5.1, we have obtained

‖SnF‖2 ≤ ‖KLnf‖2.

Thus, for K ∈ C(Ω), by generalized Hölder’s inequality, we have

‖SnF‖2 ≤ ‖K‖∞‖Lnf‖2,

and by the stability result (3.2.4) of Ln, we have the stability (3.5.6) of Sn.
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Similar to the case of K ∈ L2(Ω), for any χ ∈ Pn′ , we have

‖SnF − F‖2 ≤ ‖Sn(F −Kχ)‖2 + ‖K(f − χ)‖2 + ‖Sn(Kχ)−Kχ‖2

≤ V 1/2

√
1− η

‖K‖∞‖f − χ‖∞ + ‖K‖2‖f − χ‖∞ + ‖Sn(Kχ)−Kχ‖2.

Letting χ = χ∗ leads to

‖SnF − F‖2 =

(
V 1/2

√
1− η

‖K‖∞ + ‖K‖2

)
En′(f) + ‖Sn(Kχ∗)−Kχ∗‖2. (3.5.8)

By Lemma 3.2.4 and the estimate (3.5.2), for any χ ∈ Pn, we have

‖Sn(Kχ∗)−Kχ∗‖2 = ‖Pn(Kχ∗)−Kχ∗‖2 ≤ ‖Pn(Kχ∗ − χ)‖2 + ‖Kχ∗ − χ‖2
≤ V 1/2‖Kχ∗ − χ‖∞ + V 1/2‖Kχ∗ − χ‖∞
= 2V 1/2‖Kχ∗ − χ‖∞.

Thus ‖Sn(Kχ∗) −Kχ∗‖2 ≤ 2V 1/2En(Kχ∗). Together with (3.5.8), we have the es-
timate (3.5.7). �

3.5.3 The potential inefficiency of classical hyperinterpolation

The classical hyperinterpolation (3.1.4) is defined to approximate continuous func-
tions. The approximation of F = Kf ∈ C(Ω) by efficient hyperinterpolation is
described by Theorem 3.5.4. Thus, if we let K = 1, then both the stability result
(3.5.6) and the error bound (3.5.7) of efficient hyperinterpolation reduce to (3.2.4)
and (3.2.5) of the classical hyperinterpolation, respectively, derived in [12]. Further-
more, if the quadrature rule (1.2.3) has exactness degree 2n, that is, η = 0, then
they reduce to the original results (3.2.1) and (3.2.2) derived by Sloan in [196].

But what if K 6= 1 and K is awkward enough to be approximated? In this case,

‖SnF − F‖2 . En′(f) + En(Kχ∗),

where χ∗ is the best uniform approximation of f in Pn′ . However, for the classical
hyperinterpolation there holds

‖LnF − F‖2 . En′(Kf).

Thus, if f is smooth enough so that En(Kχ∗) dominates the bound of ‖SnF − F‖2,
and if n′ < n and K is awkward enough so that En′(Kf) is considerably greater
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than En(Kχ∗), efficient hyperinterpolation shall give a better approximation than
the classical one in the sense of estimated error bounds.

On the other hand, it is inappropriate to claim that efficient hyperinterpolation
is always better than the classical hyperinterpolation in the approximation of F =

Kf . If the singularity of K is relatively weak (for a singular K), or if K oscillates
slowly (for an oscillatory K), then the classical hyperinterpolation may generate a
comparable or even better approximation of F than efficient hyperinterpolation.

3.6 Examples and numerical experiments

We now numerically investigate efficient hyperinterpolation (3.1.6) on two specific
regions, the interval [−1, 1] ⊂ R and the unit sphere S2 ⊂ R3. On each region, we
test oscillatory and singular terms K, respectively. A key issue is how to evaluate the
modified moments (3.3.3). We shall discuss the computational issues of the moments
respectively on each region and for each K. All numerical results are carried out by
using MATLAB R2022a on a laptop (16 GB RAM, Intel CoreTM i7-9750H Processor)
with macOS Monterey 12.3.

3.6.1 On the interval

Let Ω = [−1, 1]. In this case, dn = n + 1. There is merit in adopting orthogonal
polynomials as the basis [97, 210] for the approximation of functions defined on
[−1, 1]. In our experiments, we let {p`}dn`=1 be normalized Legendre polynomials
{P̃`}n`=0, and let {qr}d2nr=1 be Chebyshev polynomials {Tr}2nr=0. Thus for any P̃`′P̃`

with 0 ≤ `′, ` ≤ n, it can be expressed as

P̃`′P̃` =

2n∑
r=0

crTr,

where the coefficients are given for r ≥ 1 by

cr =
2

π

∫ 1

−1

P̃`′(x)P̃`(x)Tr(x)√
1− x2

dx, r = 1, . . . , 2n,

and for r = 0 by the same formula with the factor π/2 changed to 1/π for r = 0

[221]. In the expression of cr, (1 − x2)−0.5 is the weight function associated to the
Chebyshev polynomials, and 〈P̃`′P̃`, Tr〉 is divided by the factor 〈Tr, Tr〉 since {Tr}2nr=0

are not orthonormal. In our experiments, these coefficients {cr} are obtained by the
chebcoeffs command included in Chebfun [75]. For the quadrature rule (1.2.3),
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we use the Gauss–Legendre quadrature. It is well-known that the m-point Gauss–
Legendre quadrature has exactness degree 2m− 1.

Oscillatory functions. We first test

K(x) = eiκx

with κ > 0, which is an oscillatory term regularly appearing in applications. For the
evaluation of

βr =

∫ 1

−1
eiκxTr(x)dx, r = 0, 1, . . . , 2n, (3.6.1)

we invoke the stable algorithm proposed in [73] for implementing the Filon–Clenshaw–
Curtis rule [72, 73]. One may also investigates other oscillatory terms in this spirit.
For example, one could study Bessel functions with the aid of Clenshaw–Curtis–Filon
method [237]. For the function f ∈ C[−1, 1], we let

f(x) = (1.2− x2)−1.

For κ = 100, we let n = 120 andm = 70; that is, the theoretical error of classical
hyperinterpolation is controlled by E19(ei100xf), while that of efficient hyperinterpo-
lation is controlled by E19(f) and E120(ei100xχ∗), where χ∗ ∈ P19 is the best uniform
approximation of f in P19. The approximation results are displayed in Figure 3.1,
in which we see that efficient hyperinterpolation generates a good approximation,
but the classical one fails to do so. Moreover, for κ = 160, we let n = 180 and
m = 100; that is, the theoretical error of classical hyperinterpolation is controlled by
E19(ei160xf), while that of efficient hyperinterpolation is controlled by E19(f) and
E180(ei160xχ∗), where χ∗ ∈ P19 is the best uniform approximation of f in P19. The
approximation results are displayed in Figure 3.2, which convey the same message
as the case of κ = 100.

We continue with a more detailed investigation on the approximation of

F (x) = eiκx(1.2− x2)−1

with κ = 100 and 160. For κ = 100, we test n = 100, 120, and 150; for κ = 160,
we consider n = 160, 180, and 210. For each (κ, n), we test several numbers m
of quadrature points. The L2 errors of each hyperinterpolant are listed in Table
3.1; these errors are evaluated by the command norm in Chebfun, with the function
F and its approximants treated as Chebfun objects. In each setting, the error of
efficient hyperinterpolation is always less than that of classical hyperinterpolation.
Apart from this, Table 3.1 conveys some other interesting messages.
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Figure 3.1: Approximation of F (x) = eiκx(1.2 − x2)−1 by Ln and Sn with
(κ, n,m) = (100, 120, 70).
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Figure 3.2: Approximation of F (x) = eiκx(1.2 − x2)−1 by Ln and Sn with
(κ, n,m) = (160, 180, 100).
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Let n be fixed. When the exactness degree of the quadrature rule is less than
2n, i.e., 2m − 1 < 2n, the limited number of quadrature points slow the conver-
gence of classical hyperinterpolation, as its error bound is controlled by En′(Kf) =

E2m−1−n(Kf). Meanwhile, efficient hyperinterpolation may work well because its er-
ror bound is controlled by En′(f) = E2m−1−n(f) and En(Kχ∗). When 2m−1 ≥ 2n,
by our analysis, the accuracy of both schemes only depends on n.

On the other hand, let m be fixed. When 2m − 1 < 2n, increasing n may not
help in improving the accuracy of classical hyperinterpolation; on the contrary, it
may slow its convergence, as E2m−1−n(Kf) is enlarged as n increases. However, if
En(Kχ∗) dominates the error bound of efficient hyperinterpolation, then increasing
n shall improve the accuracy of efficient hyperinterpolation.

Singular functions. We then test three singular terms K, which are

K(x) =


(1 + x)−1/3,

|x− 1|−0.2,

(1− x2)−0.5.

For the first two cases, we compute

βr =

∫ 1

−1
K(x)Tr(x)dx, r = 0, 1, . . . , 2n,

by the built-in command quadgk in MATLAB, which is a stable procedure developed
in [189]. For the third case, as (1 − x2)−0.5 is the weight function associated to the
Chebyshev polynomials, we have β0 = π and βr = 0 for all r ≥ 1. For the continuous
function f ∈ C[−1, 1], we let

f(x) = e−x
2
.

For each K, we report the L1 errors of classical and efficient hyperinterpolation
with n = 6, 9, 12, . . . , 120, and m = d1.1n/2e, d1.2n/2e, and d1.5n/2e. These errors
are evaluated numerically by the MATLAB built-in command quadgk ,and they are
plotted in Figure 3.3. We can summarize from these errors that when the available
data (the number of quadrature points) is limited, then the error of efficient hyper-
interpolation is generally less than that of classical hyperinterpolation. It is also
interesting to see that classical hyperinterpolation may perform better than efficient
hyperinterpolation as the amount of quadrature points increases. For example, see
the subplots on the bottom left and bottom right of Figure 3.3. An interesting related
fact is that the functions K(x) = (1 + x)−1/3 and K(x) = (1 − x2)−0.5 is smoother
than K(x) = |x − 1|−0.2 in the sense of differentiability. Hence, it is interesting
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to identify the critical number of quadrature points that the outperformance of the
classical and efficient hyperinterpolation switches as future work. In particular, this
critical number may be related to the smoothness of F .
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Figure 3.3: Errors of hyperinterpolation and efficient hyperinterpolation with dif-
ferent (n,m) for the approximation of F (x) = K(x)f(x) with three singular K’s and
f(x) = e−x

2 . From top row to bottom row: m = d1.1n/2e, d1.2n/2e, and d1.5n/2e,
respectively.

3.6.2 On the sphere

Let Ω = S2 ⊂ R3 with dω(x) = ω(x)dx, where ω(x) is an area measure on S2. Thus

V =

∫
S2

dω = 4π

denotes the surface area of S2. In this example, Pn can be regarded as the space of
spherical polynomials of degree at most n. Let the basis {p`}dn`=1 be a set of orthonor-
mal real spherical harmonics {Y`,k : ` = 0, 1, . . . , n, and k = −`,−`+ 1, . . . , `−1, `},
and the dimension of Pn is dn = (n+ 1)2. Let {qr}d2nr=1 also be the set of orthonormal
real spherical harmonics {Y`,k : ` = 0, 1, . . . , 2n, and k = −`,−`+ 1, . . . , `− 1, `}.

For the quadrature rule (1.2.3), we use the rule based on spherical t-designs,
which can be implemented easily and efficiently. A point set {x1, x2, . . . , xm} ⊂ S2

is said to be a spherical t-design [69] if it satisfies

1

m

m∑
j=1

v(xj) =
1

4π

∫
S2
vdω ∀v ∈ Pt. (3.6.2)
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In other words, it is a set of points on the sphere such that an equal-weight quadrature
rule in these points integrates all (spherical) polynomials up to degree t exactly.
Spherical t-designs require at least (t+1)2 quadrature points to achieve the exactness
degree t. For generating spherical t-designs, we make use of the well-conditioned
spherical t-designs [7] with m = (t+ 1)2.

For any Y`′,k′Y`,k with 0 ≤ `′, ` ≤ n, −`′ ≤ k′ ≤ `′, and −` ≤ k ≤ `, it can be
expressed as

Y`′,k′Y`,k =
2n∑
`′′=0

`′′∑
k′′=−`′′

c`′′k′′Y`′′,k′′ ,

where the coefficients

c`′′k′′ =

∫
S2

(Y`′,k′Y`,k)Y`′′,k′′dω, `′′ = 0, . . . , 2n, k′′ = −`′′, . . . , `′′

are evaluated by a quadrature rule using spherical (`+ `′ + `′′)-designs.

We may use boldface letters to denote a point on S2, say x = [x, y, z]T, in order
to avoid any potential ambiguity. The Euclidean distance between two points ξ and
x on the sphere S2 is defined as

|ξ − x| :=
√

2(1− ξ · x),

where · denotes the inner product in R3.

Oscillatory functions. The spherical harmonics themselves are highly oscil-
latory when their degrees become large. Thus we let K = Y¯̀,k̄ for some ¯̀, k̄ ∈ N. In
this case, the modified moments can be evaluated by

βr := β`′′k′′ =

∫
S2
Y¯̀,k̄Y`′′,k′′dω = δ¯̀,`′′δk̄,k′′ .

For the continuous function f ∈ C(S2), we let

f(x) = f(x, y, z) = cos(cosh(xz)− 2y).

We investigate two kinds of oscillatory terms, (¯̀, k̄) = (12, 8) and (32,−24).
For K = Y12,8, we let n = 20 and m = 625, that is, t = 24, the theoretical error
of classical hyperinterpolation is controlled by E4(Y12,8f), while that of efficient
hyperinterpolation is controlled by E4(f) and E20(Y12,8χ

∗), where χ∗ ∈ P4 is the
best uniform approximation of f in P4. The approximation results are displayed
in Figure 3.4, in which we see that efficient hyperinterpolation generates a good
approximation, but the classical one does not. For K = Y32,−24, we let n = 40 and
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m = 2209, that is, t = 46, the theoretical error of classical hyperinterpolation is
controlled by E6(Y32,−24f), while that of efficient hyperinterpolation is controlled by
E6(f) and E40(Y32,−24χ

∗), where χ∗ ∈ P6 is the best uniform approximation of f in
P6. The approximation results are displayed in Figure 3.5, which convey the same
message as the case of K = Y12,8.

Figure 3.4: Approximation of F = Y12,8f with f(x, y, z) = cos(cosh(xz) − 2y) by
hyperinterpolation Ln and efficient hyperinterpolation Sn.

Figure 3.5: Approximation of F = Y32,−24f with f(x, y, z) = cos(cosh(xz) − 2y)
by hyperinterpolation Ln and efficient hyperinterpolation Sn.

Similar to Table 3.1, we list the L2 errors of the classical and efficient hyperinter-
polation in different settings in Table 3.2. These errors are evaluated by the command
norm in Spherefun [216], a part of Chebfun for computing with functions defined on
the surface of the unit sphere, and the functions and their approximants are regarded
as Spherefun objects. We see that the error of efficient hyperinterpolation is always
less than (or eventually equal to) that of the classical hyperinterpolation.

Singular functions. For singular functions, we test three different singular
terms. Their forms and the evaluation of modified moments

βr := β`′′k′′ =

∫
S2
K(x)Y`′′,k′′(x)dω(x)

for `′′ = 0, . . . , 2n and k′′ = −`′′, . . . , `′′ are elaborated as follows.
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• Let
K(x) = |ξ − x|ν ,

where ν > −1, and ξ is an algebraic type singularity if ν < 0. Then

β`′′k′′ = 2ν+2π
(
−ν

2

)
`′′

Γ(ν+2
2 )

Γ(`′′ + ν/2 + 2)
Y`′′,k′′(ξ),

where Γ(·) is the Gamma function, and (·)n = Γ(·+n)/Γ(·) is the Pochhammer
symbol [15].

• Let
K(x) = log |ξ − x|,

where ξ is a logarithmic type singularity. Then

β`′′k′′ =
|S1|
2

(∫ 1

−1
log(2(1− t))P`′′(t)dt

)
Y`′′,k′′(ξ), (3.6.3)

where |S1| = 2π is the length of the unit circle S1, and P` denote the Legendre
polynomials of degree ` (without normalization).

• Let
K(x) = |ξ − x|ν1 |ξ + x|ν2 ,

where ν1, ν2 > −1, and ξ and −ξ are two algebraic type singularities if ν1, ν2 <

0. Then

β`′′k′′ =(−1)`
′′
2(ν1+ν2)/2|S1|R`,3(∫ 1

−1
(1− t)ν1/2(1 + t)ν2/2

[(
d
dt

)`′′
(1− t2)`

′′

]
dt

)
Y`′′,k′′(ξ),

where

Rn,s =
Γ( s−1

2 )

2nΓ(n+ s−1
2 )

.

There results can be found in [15, Chapter 3]. In particular, the modified moments
of the third term can be evaluated by

β`′′k′′ = 2(ν1+ν2)/2|S1|
(∫ 1

−1
(1− t)ν1/2(1 + t)ν2/2P`′′(t)dt

)
Y`′′,k′′(ξ), (3.6.4)

with the aid the Rodrigues’ formula

Pn(x) =
1

2nn!

(
d
dx

)n [
(x2 − 1)n

]
= (−1)n

1

2nn!

(
d
dx

)n
(1− x2)n
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for Legendre polynomials1. For the continuous function f ∈ C(S2), we consider

f1(x) = f1(x, y, z) =0.75 exp(−(9x− 2)2/4− (9y − 2)2/4− (9z − 2)2/4)

+ 0.75 exp(−(9x+ 1)2/49− (9y + 1)/10− (9z + 1)/10)

+ 0.5 exp(−(9x− 7)2/4− (9y − 3)2/4− (9z − 5)2/4)

− 0.2 exp(−(9x− 4)2 − (9y − 7)2 − (9z − 5)2),

(3.6.5)
which is analytic on the sphere, and

f2(x) = f2(x, y, z) = exp(x+ y + z). (3.6.6)

The integrals in modified moments (3.6.3) and (3.6.4) are evaluated by the MAT-
LAB built-in command quadgk. For each K, we report the L1 errors of classical
and efficient hyperinterpolation with n = 2, 3, 4, . . . , 40, and m = (d1.1ne + 1)2,
(d1.2ne+1)2, and (d1.5ne+1)2. The singularity ξ in the definitions of K(x) is set as
ξ = [

√
2/2,
√

2/2, 0]T. These errors of approximating f1 and f2 are numerically eval-
uated by a 50,000-point equal-weight quadrature rule, and they are plotted in Figures
3.6 and 3.7, respectively. Unlike the experiments on the singular functions with end-
point singularities on [−1, 1], all singularities on the sphere are interior. Thus, the
numerical integration of spherical singular functions becomes extremely unstable:
the actual performance of numerical integration depends on the point distribution
around the singularities. This technical issue is also reflected in the approximation
of singular functions by numerically integrating the L2 projection coefficients, i.e.,
the approximation by classical hyperinterpolation. We see from Figures 3.6 and 3.7
that it seems impossible to predict the actual accuracy of classical hyperinterpolation
in the approximation of F (x, y, z) = K(x, y, z)f(x, y, z) with f defined as (3.6.5),
with three kinds of singular K listed above. Indeed, the stability and error bounds
of classical hyperinterpolation in [12, 196] are only valid for the approximation of
continuous functions. On the other hand, we see that the actual accuracy of ef-
ficient hyperinterpolation is stable and predictable: the point distribution around
singularities does not affect the performance of efficient hyperinterpolation, and the
approximation error decays as n increases.

1It may be unstable to evaluate the integral
∫ 1

−1
(1− t)ν1/2(1 + t)ν2/2( d

dt )
n(1− t2)ndt by taking

the n-th derivative and then evaluating the resulting integral, as the factor accumulated as n! after
differentiation may be huge. Thus the error of representing numbers by double-precision floating-
point numbers, according to IEEE Standard 754, may be inaccurate.
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Figure 3.6: Errors of hyperinterpolation and efficient hyperinterpolation with dif-
ferent (n,m) for the approximation of F (x, y, z) = K(x, y, z)f1(x, y, z) with three
singular K’s and f1(x, y, z) defined as (3.6.5). The singularity ξ in the definitions of
K(x) is set as ξ = [
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Figure 3.7: Errors of hyperinterpolation and efficient hyperinterpolation with dif-
ferent (n,m) for the approximation of F (x, y, z) = K(x, y, z)f2(x, y, z) with three
singular K’s and f2(x, y, z) defined as (3.6.6). The singularity ξ in the definitions of
K(x) is set as ξ = [

√
2/2,
√

2/2, 0]T. From top row to bottom row: m = (d1.1ne+1)2,
(d1.2ne+ 1)2, and (d1.5ne+ 1)2, respectively.
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Chapter 4

Bypassing the quadrature
exactness of hyperinterpolation

Let us continue the discussion on relaxing the quadrature exactness assumption
(1.2.4) in Chapter 2. Recall that in Sloan’s original manuscript [196], hyperinterpo-
lation (1.2.5) of degree n is a discrete approximation of the L2-orthogonal projection
(1.2.2) of degree n with its Fourier coefficients evaluated by a positive-weight quadra-
ture rule (1.2.3) that exactly integrates all spherical polynomials of degree at most
2n. This chapter aims to bypass this quadrature exactness assumption (1.2.4) by
replacing it with the Marcinkiewicz–Zygmund property (2.2.5) proposed in Chap-
ter 2. Consequently, hyperinterpolation can be constructed by a positive-weight
quadrature rule (not necessarily with quadrature exactness). This scheme is referred
to as unfettered hyperinterpolation. This chapter provides a reasonable error esti-
mate for unfettered hyperinterpolation. The error estimate generally consists of two
terms: a term representing the error estimate of the original hyperinterpolation of
full quadrature exactness and another introduced as compensation for the loss of
exactness degrees. A guide to controlling the newly introduced term in practice is
provided. In particular, if the quadrature points form a quasi-Monte Carlo (QMC)
design, then there is a refined error estimate. Numerical experiments verify the error
estimates and the practical guide.

In particular, we focus on the approximation of spherical functions in this chap-
ter, utilizing some tools from spherical harmonic analysis.

4.1 Introduction

Let Sd := {x ∈ Rd+1 : ‖x‖2 = 1} be the unit sphere in the Euclidean space Rd+1 for
d ≥ 2, endowed with the surface measure dωd; that is, |Sd| :=

∫
Sd dωd denotes the

surface area of the unit sphere Sd. Many real-world applications can be modeled as
spherical problems. A critical task of spherical modeling is to find an effective data
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fitting strategy to approximate the underlying mapping between input and output
data. Hyperinterpolation is a simple yet powerful method for fitting spherical data,
and it has received a great deal of interest since its birth, see references listed in
Chapter 1. Given sampled data {(xj , yj)}mj=1 ⊂ Sd×R, the underlying mapping can
be modeled as a spherical hyperinterpolant of degree n in the form of

x ∈ Sd 7→
m∑
j=1

wjyjGn(x, xj) ∈ R, (4.1.1)

where wj > 0, j = 1, 2, . . . ,m, are some prescribed weights,

Gn(x, y) =
n∑
`=0

Z(d,`)∑
k=1

Y`,k(x)Y`,k(y)

is a kernel generated by the spherical harmonics {Y`,k} of degree at most n, and the
precise number Z(d, `) of spherical harmonics of exact degree ` is given in (4.2.1).

The simplicity of spherical hyperinterpolation is manifested in the modeled map-
ping (4.1.1). Unlike many other fitting techniques that usually need to solve a sys-
tem of linear equations to obtain the modeled mapping, e.g., the least squares, the
spherical hyperinterpolation (4.1.1) can be directly written down and immediately
generates the output from any input x ∈ Sd without any mathematical manipula-
tions but only addition and multiplication. Moreover, adding a new data pair or
withdrawing an existing one can be directly achieved without a new computation
from scratch.

However, the construction of hyperinterpolation of degree n requires a positive-
weight quadrature rule (4.1.2)

m∑
j=1

wjf(xj) ≈
∫
Sd
fdωd (4.1.2)

to be exact for polynomials up to degree 2n, that is,

m∑
j=1

wjf(xj) =

∫
Sd
fdωd ∀f ∈ P2n(Sd), (4.1.3)

where Pn(Sd) be the space of spherical polynomials of degree at most n. A conve-
nient L2-orthonormal basis (with respect to dωd) for Pn is provided by the spherical
harmonics {Y`,k : k = 1, 2, . . . Z(d, `); ` = 0, 1, 2, . . . , n}. The spherical hyperinterpo-
lation operator Ln : C(Sd) → Pn(Sd) maps a continuous function f ∈ C(Sd) on the
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sphere Sd to

Lnf :=

n∑
`=0

Z(d,`)∑
k=1

〈f, Y`,k〉mY`,k ∈ Pn(Sd), (4.1.4)

where

〈f, g〉m :=
m∑
j=1

wjf(xj)g(xj)

is the numerical evaluation of the inner product

〈f, g〉 :=

∫
Sd
f(x)g(x)dωd

by the quadrature rule (4.1.2) with the exactness assumption (4.1.3). In other words,
the hyperinterpolation (4.1.4) of f ∈ C(Sd) can be regarded as a discrete version of
the famous L2-orthogonal projection

Pnf :=
n∑
`=0

Z(d,`)∑
k=1

〈f, Y`,k〉Y`,k ∈ Pn(Sd) (4.1.5)

of f from C(Sd) onto Pn(Sd). Sometimes we may consider equal-weight quadrature
rules of the form

|Sd|
m

m∑
j=1

f(xj) ≈
∫
Sd
fdωd. (4.1.6)

Regarding this very restrictive nature of (4.1.3) that it is impractical and some-
times impossible to obtain data on the desired quadrature points in practice, our
aim in this chapter is to bypass this quadrature exactness assumption by replacing
it with the Marcinkiewicz–Zygmund property ; namely, we assume that there exists
an η ∈ [0, 1) such that (2.2.5) holds. If n′ = n, i.e., the quadrature exactness is
not relaxed, then the exactness (4.1.3) implies η = 0. Then the construction of
hyperinterpolation is feasible with many more quadrature rules outside the tradi-
tional candidates. Traditionally, quadrature rules using spherical t-designs are used
to construct hyperinterpolation. As we can see in this chapter, quadrature rules us-
ing scattered points, equal area points, minimal energy points, maximal determinant
points, and many other kinds of points are also feasible for constructing hyperinter-
polation. The Marcinkiewicz–Zygmund property (2.2.5) is equivalent to

(1− η)

∫
Sd
χ2dωd ≤

m∑
j=1

wjχ(xj)
2 ≤ (1 + η)

∫
Sd
χ2dωd ∀χ ∈ Pn(Sd),
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which can be regarded as the Marcinkiewicz–Zygmund inequality [89, 143, 146] ap-
plied to polynomials χ2 of degree at most 2n with χ ∈ Pn(Sd), and it has been
utilized in Chapter 2 that quadrature rules are assumed to have exactness degree
n+ n′ with 0 < n′ ≤ n for the construction of hyperinterpolation.

To tell the difference between the original hyperinterpolation Ln and the hyper-
interpolation relying only on the Marcinkiewicz–Zygmund property (2.2.5), we refer
to the latter as the unfettered hyperinterpolation, indicating that the application of
hyperinterpolation is no longer limited by the quadrature exactness assumption, and
denote it by

Unf :=

n∑
`=0

Z(d,`)∑
k=1

〈f, Y`,k〉mY`,k ∈ Pn(Sd), (4.1.7)

where the quadrature rule (4.1.2) for evaluating 〈f, Y`,k〉m is only assumed to satisfy
the property (2.2.5).

We derive in this chapter that

‖Unf−f‖L2 ≤

√1 + η

 m∑
j=1

wj

1/2

+ |Sd|1/2

En(f)+
√
η2 + 4η‖χ∗‖L2 , (4.1.8)

where En(f) denotes the best uniform error of f ∈ C(Sd) by a polynomial in Pn(Sd),
that is,

En(f) := inf
χ∈Pn(Sd)

‖f − χ‖∞,

and χ∗ ∈ Pn(Sd) is the best approximation polynomial of f in Pn(Sd) in the sense of

‖f − χ∗‖∞ = En(f).

Thus, no matter what kind of point distributions is adopted, it is sufficient for a
reasonable approximation error bound to control the numerical integration error so
that the constant η in the Marcinkiewicz–Zygmund property (2.2.5) is reasonably
small.

The L2 error estimate (4.1.8) reduces to the classical result

‖Lnf − f‖L2 ≤ 2|Sd|1/2En(f)
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of hyperinterpolation derived in [196] when the quadrature exactness degree is as-
sumed to be 2n, because such an assumption leads to η = 0 and

m∑
j=1

wj =

∫
Sd

dωd = |Sd|.

If the quadrature exactness degree is assumed to be n + n′ with 0 < n′ ≤ n, then
the estimate (4.1.8) can be refined as

‖Unf − f‖L2 ≤
(√

1 + η + 1
)
|Sd|1/2En′(f),

and this convergence rate in terms of En′(f) coincides with the result in Chapter 2
that

‖Lnf − f‖L2 ≤
(

1√
1− η

+ 1

)
|Sd|1/2En′(f) (4.1.9)

under the same assumption. A Sobolev analog to the error estimate (4.1.8), i.e., the
error measured by a Sobolev norm, is also established in this chapter.

We also highlight the connection between the unfettered hyperinterpolation and
QMC designs. Historically, quadrature exactness is often a starting point in design-
ing quadrature rules. Nevertheless, this trend has recently received growing concerns
regarding whether exactness is a reliable designing principle, see, e.g., [222]. The con-
cept of QMC designs, introduced by Brauchart, Saff, Sloan, and Womersley in [35],
is an important quadrature-designing principle against this historical trend. QMC
designs include many points distributions that are easy to obtain numerically, and
quadrature rules using QMC designs provide the same asymptotic order of conver-
gence as rules with quadrature exactness when the integrand belongs to the Sobolev
space Hs(Sd) with s > d/2. Moreover, quadrature exactness is not a necessary as-
sumption for QMC designs. If the quadrature points form a QMC design, then we
show quadrature rules using them also satisfy the Marcinkiewicz–Zygmund prop-
erty (2.2.5). Hence hyperinterpolation using QMC designs is a special case in the
general framework of unfettered hyperinterpolation. However, the general error es-
timate (4.1.8) may not be sharp for hyperinterpolation using QMC designs, and
we can refine them. Regarding the particularity of QMC designs, we may refer to
the hyperinterpolation of f ∈ Hs(Sd) using QMC designs, though a special case of
unfettered hyperinterpolation, as the QMC hyperinterpolation, and denote it by

Qnf :=
n∑
`=0

Z(d,`)∑
k=1

〈f, Y`,k〉m Y`,k ∈ Pn(Sd), (4.1.10)
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where the quadrature rule (4.1.2) for evaluating 〈f, Y`,k〉m adopt a QMC design for
Hs(Sd) as the set of quadrature points. We show in this chapter that for f ∈ Hs(Sd),

‖Qnf − f‖L2 ≤ c′′(s, d)

(
n−s +

1

ms/d

√
Z(d+ 1, n)

a
(s)
n

)
‖f‖Hs ,

where c′′(s, d) > 0 is some constant depending only on c and s, and a(s)
n is of order

(1 + n)−2s.

The rest of this chapter is organized as follows. Section 4.2 collects some techni-
cal facts regarding spherical harmonics, our Sobolev space setting, spherical t-designs,
and QMC designs. Section 4.3 gives the approximation theory of the unfettered hy-
perinterpolation under the only assumption of the Marcinkiewicz–Zygmund property
(2.2.5). Section 4.4 develops the approximation theory of the QMC hyperinterpola-
tion under the only assumption that {xj}mj=1 is a QMC design. Section 4.5 contains
numerical experiments that validate our theory.

4.2 Spherical harmonics analysis and spherical designs

We are concerned with real-valued functions on the sphere Sd in the Euclidean space
Rd+1 for d ≥ 2.

4.2.1 Spherical harmonics and hyperinterpolation

Let L2(Sd) denote the Hilbert space of all square-integrable functions on Sd with the
inner product

〈f, g〉 :=

∫
Sd
f(x)g(x)dωd(x)

and the induced norm
‖f‖L2 :=

√
〈f, f〉.

By C(Sd) we denote the space of continuous functions on Sd, endowed with the
uniform norm

‖f‖∞ := ess supx∈Sd |f(x)|.

The restriction to Sd of a homogeneous and harmonic polynomial of total degree
` defined on Rd+1 is called a spherical harmonic of degree ` on Sd. We denote, as
usual, by {Y`,k : k = 1, 2, . . . , Z(d, `)} a collection of L2-orthonormal real-valued
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spherical harmonics of exact degree `, where

Z(d, 0) = 1, Z(d, `) = (2`+ d− 1)
Γ(`+ d− 1)

Γ(d)Γ(`+ 1)
∼ 2

Γ(d)
`d−1 as `→∞, (4.2.1)

where Γ(z) is the Gamma function. The spherical harmonics of degree ` ∈ {0, 1, 2, . . .}
satisfy the addition theorem [151, Theorem 2], that is,

Z(d,`)∑
k=1

Y`,k(x)Y`,k(y) =
Z(d, `)

|Sd|
P

(d)
` (x · y),

where P (d)
` is the normalized Gegenbauer polynomial on [−1, 1], orthogonal with

respect to the weight function (1 − t2)d/2−1, and normalized such that P (d)
` (1) = 1.

As an immediate application of the addition theorem, we have

‖Y`,k‖∞ ≤
(
Z(d, `)

|Sd|

)1/2

(4.2.2)

for all ` = 0, 1, 2, . . . and k = 1, 2, . . . , Z(d, `). Indeed, for any spherical harmonic
Y`,k, suppose |Y`,k(x)| attains ‖Y`,k‖∞ at the point x∗ ∈ Sd, then

‖Y`,k‖∞ = |Y`,k(x∗)| ≤

Z(d,`)∑
k=1

|Y`,k(x∗)|2
1/2

=

(
Z(d, `)

|Sd|
P

(d)
` (1)

)1/2

=

(
Z(d, `)

|Sd|

)1/2

.

Besides, it is well known (see, e.g., [151, pp. 38–39]) that each spherical harmonic
Y`,k of exact degree ` is an eigenfunction of the negative Laplace–Beltrami operator
−∆∗d for Sd with eigenvalue

λ` := `(`+ d− 1). (4.2.3)

The family {Y`,k : k = 1, . . . , Z(d, `); ` = 0, 1, 2, . . .} of spherical harmonics
forms a complete L2-orthonormal (with respect to dωd) system for the Hilbert space
L2(Sd). Thus, for any f ∈ L2(Sd), it can be represented by a Laplace–Fourier series

f(x) =

∞∑
`=0

Z(d,`)∑
k=1

f̂`,kY`,k(x)

with coefficients
f̂`,k := 〈f, Y`,k〉 =

∫
Sd
f(x)Y`,k(x)dωd(x) (4.2.4)

for ` = 0, 1, 2, . . . and k = 1, 2, . . . , Z(d, `).
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The space Pn(Sd) of all spherical polynomials of degree at most n (i.e., the
restriction to Sd of all polynomials in Rd+1 of degree at most n) coincides with the
span of all spherical harmonics up to (and including) degree n, and its dimension
satisfies dimPn(Sd) = Z(d + 1, n). The space Pn(Sd) is also a reproducing kernel
Hilbert space with the reproducing kernel

Gn(x, y) =
n∑
`=0

Z(d,`)∑
k=1

Y`,k(x)Y`,k(y) (4.2.5)

in the sense that
〈χ,G(·, x)〉 = χ(x) ∀χ ∈ Pn(Sd), (4.2.6)

see, e.g., [176]. Given f ∈ C(Sd), it is often simpler in practice to express the
hyperinterpolant Lnf using the reproducing kernel Gn(·, ·) defined by (4.2.5). By
rearranging the summation,

Lnf(x) =

n∑
`=0

Z(d,`)∑
k=1

 m∑
j=1

wjf(xj)Y`,k(xj)

Y`,k(x)

=
m∑
j=1

wjf(xj)Gn(x, xj).

Since such a summation-rearranging procedure does not depend on the quadrature
exactness, such an expression also applies to Unf and Qnf . What makes the above
three expressions different is the quadrature rules used for constructing different
kinds of hyperinterpolants.

4.2.2 Sobolev spaces

The study of hyperinterpolation in a Sobolev space setting can be traced back to
the work [110] by Hesse and Sloan. The Sobolev space Hs(Sd) on the sphere Sd may
be defined for s ≥ 0 as the set of all functions f ∈ L2(Sd) whose Laplace–Fourier
coefficients (4.2.4) satisfy

∞∑
`=0

Z(d,`)∑
k=1

(1 + λ`)
s|f̂`,k|2 <∞,

where λ` is given as (4.2.3). When s = 0, we have H0(Sd) = L2(Sd). The norm in
Hs(Sd) may be defined as the square root of the expression on the left-hand side of
the last inequality; however, in this chapter, we shall take advantage of the freedom
to define equivalent Sobolev space norms. Let s > d/2 be fixed and suppose we are
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given a sequence of positive real numbers (a
(s)
` )`≥0 satisfying

a
(s)
` � (1 + λ`)

−s � (1 + `)−2s. (4.2.7)

Then we can define a norm in Hs(Sd) by

‖f‖Hs :=

 ∞∑
`=0

Z(d,`)∑
k=1

1

a
(s)
`

|f̂`,k|2
1/2

.

The norm ‖·‖Hs therefore depends on the particular choice of the sequence (a
(s)
` )`≥0,

but a change to this sequence merely leads to an equivalent Sobolev norm.

The following lemmas are necessary for our analysis.

Lemma 4.2.1 For any f ∈ Pn(Sd),

‖f‖Hs ≤ c̃ (n+ 1)s ‖f‖L2 ,

where c̃ > 0 is a constant.

Proof. It is straightforward that for any f ∈ Pn(Sd),

‖f‖Hs =

 n∑
`=0

Z(d,`)∑
k=1

1

a
(s)
`

|f̂`,k|2
1/2

≤

(
1

a
(s)
n

‖f‖2L2

)1/2

≤ c̃ (n+ 1)s ‖f‖L2 ,

where we used the order (4.2.7) of (a
(s)
` )`≥0. �

Lemma 4.2.2 If s > d/2, then

‖fg‖Hs ≤ č‖f‖Hs‖g‖Hs ,

where č > 0 is some constant.

Proof. For any Lipschitz domain Ω, let W s,2(Ω) be the Sobolev space of those
functions in L2(Ω) whose distributional derivatives up to (and including) order s are
in L2(Ω). Note that the Sobolev spaces Hs(Sd) can also be defined with the help
of charts (that is, the so-called Sobolev spaces over boundaries), giving the space
W s,2(Sd) with an equivalent norm, that is,

c1‖f‖Hs ≤ ‖f‖W s,2(Sd) ≤ c2‖f‖Hs , (4.2.8)



Chapter 4. Bypassing the quadrature exactness of hyperinterpolation 72

where c1, c2 > 0 are some constants; see [138, Chapter 7.3] or [14, Chapter 7.2.3].
If s > d/2, then the Sobolev space W s,2(Sd) is a Banach algebra, that is, for any
f, g ∈W s,2(Sd),

‖fg‖W s,2(Sd) ≤ c3‖f‖W s,2(Sd)‖g‖W s,2(Sd), (4.2.9)

where c3 > 0 is some constant; we refer to [1, Theorem 5.23] or [144, Section 6.1] for
this result. Together with (4.2.8) and (4.2.9), we have the desired estimate. �

Remark 4.2.3 The norm equivalence (4.2.8) is also identified and utilized in some
other spherical approximation schemes, see, e.g., [112, 127].

4.2.3 Spherical t-designs and QMC designs

As briefly mentioned earlier in Chapter 2, a spherical t-design, introduced in the
remarkable paper [69] by Delsarte, Goethals, and Seidel, is a set of points {xj}mj=1 ⊂
Sd with the characterizing property that an equal-weight quadrature rule in these
points exactly integrates all polynomials of degree at most t, that is,

|Sd|
m

m∑
j=1

χ(xj) =

∫
Sd
χ(x)dωd(x) ∀χ ∈ Pt. (4.2.10)

A majority of studies in the literature on spherical designs care about the relation
between m and t in (4.2.10). It was known by Seymour and Zaslavsky [187] that a
spherical t-design always exists ifm is sufficiently large, but no quantitative results on
the size of m were established. In the original manuscript [69] of spherical t-designs,
lower bounds on m of exact order td were derived in the sense that

m ≥


(
d+ t/2

d

)
+

(
d+ t/2− 1

d

)
for even t,

2

(
d+ bt/2c

d

)
for odd t;

but according to Bannai and Damerell [17, 18], the number m of quadrature points
could attain these lower bounds only for a few small values of t. Bondarenko, Rad-
chenko, and Viazovska asserted in [28] that for each m ≥ ctd with some positive
but unknown constant c > 0, there exists a spherical t-design in Sd consisting of m
points.

Quadrature rules (4.1.2) using spherical t-designs are known to have fast-convergence
property when the integrand belongs to the Sobolev spaceHs; namely, given s > d/2,
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there exists C(s, d) > 0 depending only on s and d such that for everym-point spher-
ical t-design {xj}mj=1 on Sd, there holds

sup
f∈Hs(Sd),
‖f‖Hs≤1

∣∣∣∣∣∣ |S
d|
m

m∑
j=1

f(xj)−
∫
Sd
f(x)dωd

∣∣∣∣∣∣ ≤ C(s, d)

ts
. (4.2.11)

The estimate (4.2.11) was established gradually: It was first proved for the particular
case s = 3/2 and d = 2 in [108], then extended to all s > 1 for d = 2 in [109], and
finally extended to all s > d/2 and all d ≥ 2 in [34]. The condition s > d/2 is
a natural one because functions to be approximated in this chapter are assumed
to be continuous, and by the Sobolev embedding theorem, Hs(Sd) is continuously
embedded in C(Sd) if s > d/2.

If only spherical t-designs with m � td are concerned, then the upper bound
on the error (4.2.11) is of order m−s/d. Here comes the concept of QMC designs,
introduced by Brauchart, Saff, Sloan, and Womersley in [35]: Given s > d/2, a
sequence {xj}mj=1 of m-point configurations on Sd with m → ∞ is said to be a
sequence of QMC designs for Hs(Sd) if there exists c(s, d) > 0 independent of m
such that

sup
f∈Hs(Sd),
‖f‖Hs≤1

∣∣∣∣∣∣ |S
d|
m

m∑
j=1

f(xj)−
∫
Sd
f(x)dωd

∣∣∣∣∣∣ ≤ c(s, d)

ms/d
. (4.2.12)

In a nutshell, quadrature rules using QMC designs provide the same asymptotic
order of convergence as exact rules (e.g., rules using spherical t-designs) when the
integrand belongs to the Sobolev space Hs, but are easier to obtain numerically. For
more studies on the numerical integration on the sphere with the integrand belonging
to a Sobolev space, we refer the reader to [31, 32, 111].

A substantial definition related to QMC designs {xj}mj=1 is the QMC strength,
denoted by s∗. For every sequence of QMC designs {xj}mj=1, there is some number s∗

such that {xj}mj=1 is a sequence of QMC designs for all s satisfying d/2 < s ≤ s∗ and
is not a QMC design for s > s∗. Even if the integrand f is infinitely differentiable,
the convergence rate of the numerical integration error (4.2.12) using a QMC design
with strength s∗ is controlled by m−s∗/d.

4.3 General framework of unfettered hyperinterpolation

With the aid of the reproducing property (4.2.6), the Marcinkiewicz–Zygmund prop-
erty (2.2.5) implies the following lemma.
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Lemma 4.3.1 For any χ ∈ Pn(Sd), we have

(a) (1− η)‖χ‖2L2 ≤ 〈Unχ, χ〉 ≤ (1 + η)‖χ‖2L2 .

(b) (1− η)‖χ‖L2 ≤ ‖Unχ‖L2 ≤ (1 + η)‖χ‖L2.

(c) ‖Unχ− χ‖2L2 ≤ (η2 + 4η)‖χ‖2L2 .

Proof. (a) The reproducing property (4.2.6) of Gn(·, ·) implies

〈Unχ, χ〉 =

〈
m∑
j=1

wjχ(xj)Gn(x, xj), χ(x)

〉

=
m∑
j=1

wjχ(xj) 〈Gn(x, xj), χ(x)〉

=
n∑
j=1

wjχ(xj)
2.

Thus by the Marcinkiewicz–Zygmund property (2.2.5),

(1− η)‖χ‖2L2 = (1− η)

∫
Sd
χ2dωd ≤

n∑
j=1

wjχ(xj)
2

≤ (1 + η)

∫
Sd
χ2dωd = (1 + η)‖χ‖2L2 .

(b) By part (a), we have

(1− η)‖χ‖2L2 ≤ 〈Unχ, χ〉 ≤ ‖Unχ‖L2‖χ‖L2 ,

leading to
(1− η)‖χ‖L2 ≤ ‖Unχ‖L2 .

We also have

‖Unχ‖2L2 ≤ 〈Unχ,Unχ〉 =

〈
m∑
j=1

wjχ(xj)Gn(x, xj),Unχ(x)

〉

=
m∑
j=1

wjχ(xj)Unχ(xj)

≤

 m∑
j=1

wjχ(xj)
2

1/2 m∑
j=1

wj (Unχ(xj))
2

1/2

≤ (1 + η)‖χ‖L2‖Unχ‖L2 ,
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where the first inequality is due to the Cauchy–Schwarz inequality, and the second
one is ensured by the Marcinkiewicz–Zygmund property (2.2.5). Thus part (b) is
proved.

(c) Using parts (a) and (b) above, it is straightforward that

‖Unχ− χ‖2L2 = ‖Unχ‖2L2 − 2 〈Unχ, χ〉+ ‖χ‖2L2

≤ (1 + η)2‖χ‖2L2 − 2(1− η)‖χ‖2L2 + ‖χ‖2L2

= (η2 + 4η)‖χ‖2L2 .

Hence this lemma is proved. �

We are now ready to state our main theorem.

Theorem 4.3.2 Given f ∈ C(Sd), let Unf ∈ Pn be its unfettered hyperinterpolant
defined by (4.1.7), where the m-point positive-weight quadrature rule (4.1.2) is only
assumed to have the Marcinkiewicz–Zygmund property (2.2.5) with η ∈ [0, 1). Then

‖Unf‖L2 ≤
√

1 + η

 m∑
j=1

wj

1/2

‖f‖∞, (4.3.1)

and

‖Unf − f‖L2 ≤

√1 + η

 m∑
j=1

wj

1/2

+ |Sd|1/2

En(f)

+
√
η2 + 4η‖χ∗‖L2 ,

(4.3.2)

where En(f) denotes the best uniform error of f by a polynomial in Pn(Sd) and
χ∗ ∈ Pn(Sd) denotes the best approximation polynomial of f in Pn(Sd) in the sense
of ‖f − χ∗‖∞ = En(f).

Proof. For any f ∈ C(Sd), we have Unf ∈ Pn and hence

〈Gn(x, xj),Unf(x)〉 = Unf(xj).
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Thus,

〈Unf,Unf〉 =

〈
m∑
j=1

wjf(xj)Gn(x, xj),Unf(x)

〉
=

m∑
j=1

wjf(xj)Unf(xj)

≤

 m∑
j=1

wjf(xj)
2

1/2 m∑
j=1

wj (Unχ(xj))
2

1/2

≤

 m∑
j=1

wj

1/2

‖f‖∞
√

1 + η‖Unf‖L2 ,

where the first inequality is due to the Cauchy–Schwarz inequality and the second
one holds by using

m∑
j=1

wjf(xj)
2 ≤ ‖f‖2∞

m∑
j=1

wj

and the Marcinkiewicz–Zygmund property (2.2.5). This estimate immediately im-
plies the stability result (4.3.1).

The error bound (4.3.2) is obtained by the following argument. For any χ ∈ Pn,
we have

‖Unf − f‖L2

=‖Un(f − χ) + (χ− f) + (Unχ− χ)‖L2

≤‖Un(f − χ)‖L2 + ‖f − χ‖L2 + ‖Unχ− χ‖L2

≤
√

1 + η

 m∑
j=1

wj

1/2

‖f − χ‖∞ + |Sd|1/2‖f − χ‖∞ + ‖Unχ− χ‖L2 .

It follows, since this estimate holds for all polynomials in Pn(Sd), that

‖Unf − f‖L2 ≤

√1 + η

 m∑
j=1

wj

1/2

+ |Sd|1/2

En(f) + ‖Unχ∗ − χ∗‖L2 .

By part (c) of Lemma 4.3.1, we have ‖Unχ∗ − χ∗‖L2 ≤
√
η2 + 4η‖χ∗‖L2 . �
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4.3.1 Connections in the literature

If the quadrature rule (4.1.2) is additionally assumed to integrate all constant func-
tions (polynomials of degree zero) exactly, that is,

m∑
j=1

wj = |Sd|,

then we have
‖Unf‖L2 ≤

√
1 + η|Sd|1/2‖f‖∞

and
‖Unf − f‖L2 ≤

(√
1 + η + 1

)
|Sd|1/2En(f) +

√
η2 + 4η‖χ∗‖L2 .

If the quadrature rule (4.1.2) exactly integrates all polynomials of degree at
most 2n, i.e., the constant η is zero, then the stability result (4.3.1) and error bound
(4.3.2) reduce to the classical results of hyperinterpolation in [196]; namely,

‖Unf‖L2 ≤ |Sd|1/2‖f‖∞

and
‖Unf − f‖L2 ≤ 2|Sd|1/2En(f).

If the quadrature rule (4.1.2) has exactness degree n+ n′ with 0 < n′ ≤ n, then
Unχ = χ for all χ ∈ Pn′(Sd), see Lemma 2.2.4. By the stability result (4.3.1), we
have for any χ ∈ Pn′(Sd),

‖Unf − f‖L2 ≤ ‖Un(f − χ)− (f − χ)‖L2 ≤ ‖Un(f − χ)‖L2 + ‖f − χ‖L2 .

As this estimate holds for all χ ∈ Pn′(Sd), it is straightforward that

‖Unf − f‖L2 ≤
(√

1 + η + 1
)
|Sd|1/2En′(f), (4.3.3)

which has the same convergence rate in terms of En′(f) as our previous estimate
(4.1.9) in [12]. In [12], we make use of the discrete orthogonal projection property
(see [12, Lemma 3.1]) to obtain the estimate (4.1.9), while in this chapter we utilize
the reproducing property (4.2.6) for the estimate (4.3.3).

Moreover, in light of Theorem 4.3.2 and the study on spherical hyperinterpola-
tion in a Sobolev space setting by Hesse and Sloan in [110], we have the following
Sobolev estimates, which reduce to their results in [110] when the exactness degree 2n
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is assumed. For simplicity and without loss of generality, we assume
∑m

j=1wj = |Sd|
in Corollary 4.3.3. Note that Hs(Sd) ⊂ L2(Sd).

Corollary 4.3.3 Let d ≥ 2, and let t and s be fixed real numbers with s ≥ t ≥ 0 and
s > d/2. Under the conditions of Theorem 4.3.2, for any unfettered hyperinterpola-
tion operator Un : Hs(Sd)→ Ht(Sd), there hold

‖Unf‖Ht ≤c̃
[(√

1 + η|Sd|1/2 + 1
)

(n+ 1)d/2+t−s‖f‖Hs

+(n+ 1)t
√
η2 + 4η‖f‖L2

]
+ ‖f‖Hs

(4.3.4)

and

‖Unf − f‖Ht ≤c̃
[(√

1 + η|Sd|1/2 + 1
)

(n+ 1)d/2+t−sEn(f ;Hs(Sd))

+c̃(n+ 1)t
√
η2 + 4η‖f‖L2

]
,

(4.3.5)

where c̃ > 0 is some constant that may vary line to line, and En(f ;Hs(Sd)) is the
best Hs approximation error of f ∈ Hs(Sd) by a polynomial in Pn(Sd), that is,

En(f ;Hs(Sd)) := inf
χ∈Pn(Sd)

‖f − χ‖Hs .

Remark 4.3.4 When the exactness degree of the rule (4.1.2) is assumed to be 2n,
we have η = 0, and hence the results (4.3.4) and (4.3.5) reduce to the respective
results of the original hyperinterpolation (some constants may be different) derived
by Hesse and Sloan in [110].

Proof. Similar to the decomposition of ‖Unf −f‖L2 in the proof of Theorem 4.3.2,
we have

‖Unf − f‖Ht ≤ ‖Un(f − Pnf)‖Ht + ‖Pnf − f‖Ht + ‖Un(Pnf)− Pnf‖Ht . (4.3.6)

The first term on the right-hand side of (4.3.6) can be bounded by

‖Un(f − Pnf)‖Ht ≤ c̃(n+ 1)t‖Un(f − Pnf)‖L2

≤ c̃(n+ 1)t
√

1 + η|Sd|1/2‖f − Pnf‖∞
≤ c̃(n+ 1)t

√
1 + η|Sd|1/2(n+ 1)d/2−s‖f − Pnf‖Hs ,

where the first inequality is due to Lemma 4.2.1, the second is due to the stability
result (4.3.1), and the third is due to [110, Lemma 3.5]. This lemma also guarantees
that

‖Pnf − f‖Ht ≤ c̃(n+ 1)t−s‖Pnf − f‖Hs .



Chapter 4. Bypassing the quadrature exactness of hyperinterpolation 79

The third term can be estimated as

‖Un(Pnf)− Pnf‖Ht ≤ c̃(n+ 1)t‖Un(Pnf)− Pnf‖L2

≤ c̃(n+ 1)t
√
η2 + 4η‖Pnf‖L2

≤ c̃(n+ 1)t
√
η2 + 4η‖f‖L2

where the first inequality is due to Lemma 4.2.1, the second is due to part (c) of
Lemma 4.3.1, and the third is due to the fact that the norm of Pn as an operator
from L2(Sd) onto L2(Sd) is 1. Thus we have

‖Unf − f‖Ht ≤c̃
[(√

1 + η|Sd|1/2 + 1
)

(n+ 1)d/2+t−sEn(f ;Hs(Sd))

+(n+ 1)t
√
η2 + 4η‖f‖L2

]
,

where En(f ;Hs(Sd)) = ‖f − Pnf‖Hs is verified by [110, Equ. (3.22)].

As ‖f − Pnf‖Hs ≤ ‖f‖Hs and ‖f‖Ht . ‖f‖Hs , we have

‖Unf‖Ht ≤‖Unf − f‖Ht + ‖f‖Ht

≤c̃
[(√

1 + η|Sd|1/2 + 1
)

(n+ 1)d/2+t−s‖f‖Hs

+(n+ 1)t
√
η2 + 4η‖f‖L2

]
+ ‖f‖Hs ,

which completes the proof of this corollary. �

4.3.2 Scattered data

In the work [126] of Le Gia and Mhaskar, the Marcinkiewicz–Zygmund inequal-
ity (2.2.5) was established for the case where quadrature points are randomly dis-
tributed:

Proposition 4.3.5 ([126, p. 463]) Let γ > 0 and η ∈ (0, 1). For an equal-weight
quadrature rule (4.1.6) with an independent random sample of m quadrature points
drawn from the distribution ωd, there exists a constant c̄ := c̄(γ) such that if m ≥
c̄nd log n/η2, then the Marcinkiewicz–Zygmund property (2.2.5) holds with probability
exceeding 1− c̄n−γ.

With Proposition 4.3.5, we can obtain a probabilistic description of Theorem
2.2.8.

Corollary 4.3.6 Adopt conditions of Theorem 2.2.8 and Proposition 4.3.5, where
the quadrature rule for constructing Unf takes the form of (4.1.6) and uses m ≥
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c̄(γ)nd log n/η2 quadrature points. Then the stability result (2.2.6) and error bound
(2.2.7) are valid with probability exceeding 1− c̄n−γ.

As we can see, having bypassed the quadrature exactness assumption of the
original hyperinterpolation, Theorem 2.2.8 provides a general framework of analyzing
the behavior of the unfettered hyperinterpolation. What we need to do in practice is
to control the constant η occurred in the Marcinkiewicz–Zygmund property (2.2.5).
As a practical guide, if the quadrature points are independently random samples
from the distribution ωd, then Corollary 4.3.6 suggests a simple way to decrease η
by increasing the number m of quadrature points.

4.4 Unfettered hyperinterpolation with QMC designs

Provided that {xj}mj=1 forms a QMC design for Hs(Sd), it can be managed to satisfy
the Marcinkiewicz–Zygmund property (2.2.5), as shown in Section 4.4.1. Hence
the unfettered hyperinterpolation using QMC designs is a special case of the general
framework analyzed in Theorem 4.3.2. Recall that we refer to such approximation as
the QMC hyperinterpolation, denoted by Qn. However, the obtained error estimate
may not be optimal due to the generality of Theorem 4.3.2, and we can find a sharper
estimate customized for the unfettered hyperinterpolation using QMC designs.

4.4.1 QMC hyperinterpolation in the general framework of unfet-
tered hyperinterpolation

It is critical to note that the numerical integration error (4.2.12) of the QMC design-
based quadrature rule and the Marcinkiewicz–Zygmund property (2.2.5) are not
interchangeable. The error (4.2.12) applies to all functions in Hs(Sd), but the prop-
erty (2.2.5) only holds for polynomial χ2 with χ ∈ Pn(Sd). On the other hand, if
the integrand in the quadrature rule (4.1.6) is χ2 with χ ∈ Pn(Sd), the error bound
(4.2.12) suggests ∣∣∣∣∣∣ |S

d|
m

m∑
j=1

χ(xj)
2 −

∫
Sd
χ2dωd

∣∣∣∣∣∣ ≤ c(s, d)

ms/d
‖χ2‖Hs (4.4.1)

with the controlling term ‖χ2‖Hs instead of
∫
Sd χ

2dωd. Nevertheless, we can find an
upper bound of ‖χ2‖Hs in terms of

∫
Sd χ

2dωd to transform the error (4.4.1) into a
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Marcinkiewicz–Zygmund property (2.2.5). With the aid of Lemma 4.2.1, we have

‖χ2‖Hs ≤ c̃(2n+ 1)s‖χ2‖L2

≤ c̃(2n+ 1)s‖χ‖∞‖χ‖L2

≤ c̃(2n+ 1)s
‖χ‖∞
‖χ‖L2

∫
Sd
χ2dωd.

For any

χ =

n∑
`=0

Z(d,`)∑
k=1

α`,kY`,k ∈ Pn(Sd),

we have

‖χ‖∞
‖χ‖L2

≤
∑n

`=0

∑Z(d,`)
k=1 |α`,k|‖Y`,k‖∞√∑n

`=0

∑Z(d,`)
k=1 |α`,k|2

≤

√
Z(d, n)

|Sd|
Z(d+ 1, n),

where we used the estimate (4.2.2) on the uniform norm of Y`,k and regard {α`,k} as
a vector of size Z(d+ 1, n). Then we can let

η =
c(s, d)c̃

ms/d
(2n+ 1)s

√
Z(d, n)

|Sd|
Z(d+ 1, n) (4.4.2)

and enforce it to be in (0, 1). Thus in this case, with the asymptotic result (4.2.1)
of the size of Z(d, `), the number m should have a lower bound of order

nd+ d2

s
− d

2s

as n → ∞. Moreover, note that for a fixed degree n, the convergence rate of the
term

√
η2 + 4η‖χ∗‖L2 in the error estimate (4.3.2) in Theorem 4.3.2 with respect to

m is m−s/(2d).

4.4.2 Approximation theory of QMC hyperinterpolation

We then show that the QMC hyperinterpolation has a sharper error estimate than
the general estimate (4.3.2) in Theorem 4.3.2.

Theorem 4.4.1 Given f ∈ Hs(Sd) ⊂ L2(Sd), let Qnf ∈ Pn(Sd) be its QMC hy-
perinterpolant defined by (4.1.10), where the m-point equal-weight quadrature rule
(4.1.6) adopts a QMC design for Hs(Sd) as quadrature points. Then

‖Qnf‖L2 ≤ ‖f‖L2 +
c′(s, d)

ms/d
(n+ 1)s‖f‖Hs , (4.4.3)
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where c′(s, d) > 0 is some constant depending only on s and d, and

‖Qnf − f‖L2 ≤ c′′(s, d)

(
n−s +

1

ms/d

√
Z(d+ 1, n)

a
(s)
n

)
‖f‖Hs , (4.4.4)

where c′′(s, d) > 0 is some constant depending only on s and d.

Proof. For f ∈ Hs(Sd), we have

‖Qnf‖2L2 = 〈Qnf,Qnf〉 =

〈
m∑
j=1

wjf(xj)Gn(x, xj),Qnf(x)

〉

=
m∑
j=1

wjf(xj)Qnf(xj)

≤
∫
Sd

(Qnf)fdωd +
c(s, d)

ms/d
‖(Qnf)f‖Hs

≤ ‖f‖L2‖Qnf‖L2 +
c(s, d)č

ms/d
‖f‖Hs‖Qnf‖Hs

≤ ‖f‖L2‖Qnf‖L2 +
c(s, d)č

ms/d
‖f‖Hs(n+ 1)s‖Qnf‖L2 ,

where the first inequality is due to the integration error (4.2.12) using QMC designs,
the second one is due to the Cauchy–Schwarz inequality and Lemma 4.2.2 with č

given there, and the last one is due to Lemma 4.2.1. Hence we have the stability
result (4.4.3).

For the error estimate (4.4.4), we have

‖Qnf − f‖L2 ≤ ‖Qnf − Pnf‖L2 + ‖Pnf − f‖L2 ,

where Pn is the L2-orthgonal projection operator (4.1.5). For the term ‖Pnf −f‖L2 ,
we have

‖Pnf − f‖2L2 =

∞∑
`=n+1

Z(d,`)∑
k=1

|〈f, Y`,k〉|2

=

∞∑
`=n+1

Z(d,`)∑
k=1

|〈f, Y`,k〉|2
a

(s)
`

a
(s)
`

. n−2s‖f‖2Hs ,
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where we use the asymptotic relation a(s)
n � (1 +n)2s. For the term ‖Qnf −Pnf‖L2 ,

we have

‖Qnf − Pnf‖2L2 =
n∑
`=0

Z(d,`)∑
k=1

∣∣〈f, Y`,k〉m − 〈f, Y`,k〉∣∣2
and

∣∣〈f, Y`,k〉m − 〈f, Y`,k〉∣∣2 ≤ (c(s, d)

ms/d
‖fY`,k‖Hs

)2

≤
(
c(s, d)č

ms/d
‖f‖Hs‖Y`,k‖Hs

)2

,

where the first inequality is described by the integration error (4.2.12) using QMC
designs, and the second is due to Lemma 4.2.2. Note that

‖Y`,k‖2Hs =

n∑
`′=0

Z(d,`)∑
k′=1

1

a
(s)
`

|
〈
Y`,k, Y`′,k′

〉
|2 =

1

a
(s)
`

.

Thus

‖Qnf − Pnf‖2L2 ≤
(
c(s, d)č

ms/d
‖f‖Hs

)2 1

a
(s)
n

n∑
`=0

Z(d,`)∑
k=1

1

=

(
c(s, d)č

ms/d
‖f‖Hs

)2 Z(d+ 1, n)

a
(s)
n

,

leading to the error estimate (4.4.4). �

The estimate (4.4.4) consists of two terms, one represents the error of the original
hyperinterpolation, and the other is newly introduced in terms of m. In addition
to hyperinterpolation, the fully discrete needlet approximation [225] using spherical
needlets [152, 153] and using quadrature rules without exactness assumption also has
error estimates of this type, see a recent contribution in [33].

Corollary 4.4.2 If f ∈ Pn(Sd) ⊂ Hs(Sd), then ‖Pnf − f‖L2 = 0 and

‖Qnf − f‖L2 ≤
c(s, d)č

ms/d

√
Z(d+ 1, n)

a
(s)
n

‖f‖Hs .

Remark 4.4.3 If the number m of quadrature points has a lower bound of order
(n+ 1)d, then ‖Qnf‖L2 is stable in the sense of

‖Qnf‖L2 ≤ ‖f‖L2 + c′(s, d)‖f‖Hs .
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Recall from (4.2.7) that a(s)
n � (1 + n)−2s and from (4.2.1) that

Z(d+ 1, n) ∼ 2

Γ(d+ 1)
nd

as n→∞. Thus if m has a lower bound of order

nd+ d2

2s ,

then ‖Qnf − f‖L2 does not blow up as n→∞. Moreover, if m has a lower bound of
order

(n+ 1)d+ε1n
d2

2s
+ε2 (4.4.5)

where ε1, ε2 > 0, then ‖Qnf − f‖L2 → 0 as n→∞.

If the QMC hyperinterpolation is regarded as a special case of the unfettered
hyperinterpolation, then the expression (4.4.2) on η requiresm to have a lower bound
of order

(2n+ 1)d+ε1n
2d2−d

2s
+ε2 (4.4.6)

so that η → 0 and hence ‖Qnf − f‖L2 → 0 as n → ∞. For the same values of ε1

and ε2, the order (4.4.6) derived from regarding the QMC hyperinterpolation as a
special case of the unfettered hyperinterpolation is unconditionally greater than the
order (4.4.5) derived from Theorem 4.4.1, as

d2

2s
<
d2

s
− d

2s

holds for any d ≥ 1. Moreover, as the term En(f) in the estimate (4.3.2) in Theorem
4.3.2 also has convergence rate of n−s, what essentially varies the general estimate
(4.3.2) and the refined estimate (4.4.4) is the other term in both estimates: the term√
η2 + 4η‖χ∗‖L2 in the estimate (4.3.2) and the term 1

ms/d

√
Z(d+1,n)

a
(s)
n

‖f‖Hs in the

refined estimate (4.4.4). For a fixed degree n, we have demonstrated in Section 4.4.1
that the convergence rate of the term in (4.3.2) with respect to m is m−s/(2d), and
we can see the convergence rate of the term in (4.4.4) is m−s/d.

Corollary 4.4.4 With the aid of Remark 4.4.3, we know that if En(f) . n−s, then
letting

m & (n+ 1)dn
d2

2s nd

gives
‖Qnf − f‖L2 . n−s.

Remark 4.4.5 For the above results, we assume f ∈ Hs(Sd) and {xj}mj=1 is a QMC
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design for Hs(Sd). Recall the concept of QMC strength. Suppose f ∈ Hs′ and
{xj}mj=1 is a QMC design with strength s∗, then s in the above results should be
s = min{s′, s∗}.

4.5 Numerical experiments

4.5.1 Point sets and test functions

Many different sequences of point sets on the sphere have been introduced in the
literature. In the following experiments, we use points sets including

◦ Random scattered points generated by the following MATLAB commands:
rvals = 2*rand(m,1)-1;

elevation = asin(rvals);

azimuth = 2*pi*rand(m,1);

% convert to Cartesian coordinates

[x1,x2,x3] = sph2cart(azimuth,elevation,ones(m,1));

◦ Equal area points [173] based on an algorithm given in [130];

◦ Fekete points which maximize the determinant for polynomial interpolation
[204];

◦ Coulomb energy points, which minimize

m∑
i,j=1

1

‖xi − xj‖2
;

◦ Spherical t-designs.

Random scattered points are directly generated in MATLAB, equal area points are
generated based on the Recursive Zonal Equal Area (EQ) Sphere Partitioning Tool-
box by Leopardi, Fekete points and Coulomb energy points are computed byWomers-
ley in advance and are available on his website1, and spherical t-designs are generated
as the so-called well conditioned spherical t-designs in [7].

Moreover, we consider four kinds of test functions, including

◦ A polynomial f1(x) = (x1 + x2 + x3)2 ∈ P6(S2);

◦ f2(x1, x2, x3) := |x1 + x2 + x3|+ sin2(1 + |x1 + x2 + x3|), which is continuous
but non-smooth;

1Robert Womersley, Interpolation and Cubature on the Sphere, http://www.maths.unsw.edu.
au/~rsw/Sphere/; accessed in August, 2022.

http:// www.maths.unsw.edu.au/~rsw/Sphere/
http:// www.maths.unsw.edu.au/~rsw/Sphere/
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◦ The Franke function for the sphere [179, p. 146]

f3(x1,x2, x3) :=

0.75 exp(−((9x1 − 2)2)/4− ((9x2 − 2)2)/4− ((9x3 − 2)2)/4)

+0.75 exp(−((9x1 + 1)2)/49− ((9x2 + 1))/10− ((9x3 + 1))/10)

+0.5 exp(−((9x1 − 7)2)/4− ((9x2 − 3)2)/4− ((9x3 − 5)2)/4)

−0.2 exp(−((9x1 − 4)2)− ((9x2 − 7)2)− ((9x3 − 5)2)),

which is in C∞(Sd);

◦ The sums of six compactly supported Wendland radial basis function [225]

f4,σ :=

6∑
i=1

φσ(zi − x), σ ≥ 0,

where z1 = [1, 0, 0]T, z2 = [−1, 0, 0]T, z3 = [0, 1, 0]T, z4 = [0,−1, 0]T, z5 =

[0, 0, 1]T, and z6 = [0, 0,−1]T. The original Wendland functions

φ̃σ(r) :=



(1− r)2
+, σ = 0,

(1− r)4
+(4r + 1), σ = 1,

(1− r)6
+(35r2 + 18r + 3)/3, σ = 2,

(1− r)8
+(32r3 + 25r2 + 8r + 1), σ = 3,

(1− r)10
+ (429r4 + 450r3 + 210r2 + 50r + 5)/5, σ = 4,

are defined in [231], where (r)+ := max{r, 0} for r ∈ R, and the normalized
Wendland functions (test functions below) as defined in [30] are

φσ(r) := φ̃σ

(
r

δσ

)
, δσ :=

3(σ + 1)Γ(σ + 1/2)

2Γ(σ + 1)
, σ ≥ 0.

The normalized Wendland functions converge pointwise to a Gaussian as σ →
∞, see [60]; moreover, f4,σ ∈ Hσ+3/2(Sd), see [129, 154].

4.5.2 Unfettered hyperinterpolation and scattered data

We start with a very interesting example of the unfettered hyperinterpolation with
scattered data. As we have discussed in Theorem 4.3.2 and Corollary 4.3.6, the
performance (i.e., the L2 error) of the unfettered hyperinterpolation is heavily de-
pendent on the constant η, and what we need to do is to control this constant. In
particular, if the degree n and the number m of quadrature points are fixed, Corol-
lary 4.3.6 suggests that η has a lower bound of order

√
n2 log n/m. It is immediate
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to see that η is positively correlated to n and negatively to m. Moreover, the term√
η2 + 4η‖χ∗‖L2 in the error bound (4.3.2) has a lower bound of order√

n2 log n

m
+ 4

√
n2 log n

m
.

That is, for a given n, the term
√
η2 + 4η‖χ∗‖L2 has a lower bound of order m−1/4.

We first solely investigate the term
√
η2 + 4η‖χ∗‖L2 that arises as an artifact

when the quadrature exactness assumption is discarded and leads to the divergence
of the unfettered hyperinterpolation by examining the test function f1 ∈ P6(Sd). As
En(f1) = 0 for all n ≥ 6, we can focus on this term

√
η2 + 4η‖χ∗‖L2 by letting

n ≥ 6. The L2 errors are depicted in Figure 4.1. For each pair of (n,m), we test ten

Figure 4.1: Convergence of the unfettered hyperinterpolation in the approximation
of f1.

times and report the average in terms of solid lines with markers; the maximal and
minimal errors among these ten tests contribute to the upper and lower bounds of
the filled region. We have at least three observations. Firstly, a larger degree n of
the unfettered hyperinterpolation, counterintuitively but rigorously asserted by our
theory, leads to a larger value of

√
η2 + 4η‖χ∗‖L2 , because Corollary 4.3.6 suggests

that η is negatively related to n. Secondly, as n increases, the unfettered hyper-
interpolation becomes more stable in the sense that the gap between the maximal
and minimal errors among the ten tests for each pair of (n,m) shrinks. This is also
asserted by Corollary 4.3.6 that the error bound (4.3.2) is valid with probability
exceeding 1 − c̄n−γ . Thirdly, as m increases, the decaying rate of the unfettered
hyperinterpolation with respect to m for each n coincides with the rate of m−1/4.
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This observation is partially covered by our theory that the term
√
η2 + 4η‖χ∗‖L2

has a lower bound of order m−1/4, see discussions in the previous paragraph, and a
reasonable conjecture is that there may hold

√
η2 + 4η‖χ∗‖L2 � m−1/4.

After characterizing the behavior of the term
√
η2 + 4η‖χ∗‖L2 , we then consider

the L2 error of the unfettered hyperinterpolation. If En(f) is not zero, then error
estimate (4.3.2) is controlled by two terms, En(f) and

√
η2 + 4η‖χ∗‖L2 . We repeat

the above procedure for non-polynomial functions f2 and f3, and the L2 errors are
displayed in Figure 4.2, in which we only report the average errors. We see that
when m is relatively small, the term

√
η2 + 4η‖χ∗‖L2 dominates the error bound, so

a smaller n leads to a smaller η and hence a smaller error bound; whenm is relatively
large, η becomes tiny, and the term En(f) dominates the error bound, so a larger n
leads to a smaller error bound.
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Figure 4.2: Convergence of the unfettered hyperinterpolation in the approximation
of f2 and f3.

Thus, we may conclude a rule of thumb for determining the degree n of the
unfettered hyperinterpolation in real-world applications: If the number of samples
is limited, then choose a small n; on the other hand, if the samples are relatively
sufficient, then choose a large n.

4.5.3 QMC hyperinterpolation and QMC designs

We then investigate the QMC hyperinterpolation, using equal area points, Coulomb
energy points, Fekete points, and spherical t-designs. We first consider the approx-
imation of f1 ∈ P6 by the QMC hyperinterpolation using equal area points, and we
show that the refined error estimate (4.4.4) in Theorem 4.4.1 is indeed sharper than
the estimate (4.3.2) in Theorem 4.3.2. A convergence result of quadrature rules using
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equal area points can be found in [111, Section 6.1]. For any n ≥ 6, we have

‖Qnf1 − f1‖L2 ≤
c′′(s, d)

ms/d

√
Z(d+ 1, n)

a
(s)
n

‖f1‖Hs , (4.5.1)

in the light of Corollary 4.4.2. As the QMC strength s∗ of equal area points is
conjectured in [35] to be 2, we may expect the decaying rate of ‖Qnf1 − f1‖L2 with
respect to m to be m−1 on the 2-sphere S2. However, from the general framework
of the unfettered hyperinterpolation, we can only expect the decaying rate to be
m−1/2; see discussions at the end of Section 4.4.1. The L2 errors are depicted in
Figure 4.3, which perfectly coincide with these deductions from our theory. We see
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Figure 4.3: Convergence of the QMC hyperinterpolation in the approximation of
f1 using equal area points.

that although the QMC hyperinterpolation can be regarded as a special case in the
general framework of unfettered hyperinterpolation, the general estimate may not be
sharp. Moreover, we find that a smaller n leads to a smaller error, suggested by the
error bound (4.5.1).

We then consider the approximation of the normalized Wendland function f4,2

by QMC hyperinterpolation, in which the term n−s‖f4,2‖Hs cannot be ignored. Thus,
the terms n−s and m−s/2 jointly determine the convergence rate of ‖Qnf4,2−f4,2‖L2 .
It is conjectured in [35] that the strength of Fekete points, equal area points, and
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Coulomb energy points is 1.5, 2, and 2, respectively. The L2 errors are depicted in
Figure 4.4.
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Figure 4.4: Convergence of the QMC hyperinterpolation in the approximation of
f4,2 using different kinds of point sets.

Similarly to the unfettered hyperinterpolation using scattered data, we see that

1

ms/d

√
Z(d+ 1, n)

a
(s)
n

‖f‖Hs

dominates the error bound when m is relatively small, so a smaller n leads to a
smaller error; and the term n−s‖f‖Hs dominates the error bound when m is rela-
tively large. We observe that each error curve flattens as m increases, and the curve
of n = 6 is higher than others when m is large enough. Note that each curve corre-
sponds to a fixed degree n. Thus the rule of thumb for determining the degree n of
the unfettered hyperinterpolation also applies to the QMC hyperinterpolation. The
error curves of the QMC hyperinterpolation using spherical t-designs quickly flatten
once the number m of spherical t-designs renders the required quadrature exactness
degrees. The convergence of the QMC hyperinterpolation using Fekete points is not
monotonic. In light of Womersley’s caveat on his website, the non-monotonic con-
vergence is possibly caused by the fact that all computed Fekete points are only
approximate local maximizers of the determinant for polynomial interpolation.

We then study the performance of the QMC hyperinterpolation in the approx-
imation of functions with different levels of smoothness. As we mentioned, the nor-
malized Wendland function f4,σ belongs to Hσ+3/2(Sd). The L2 errors of the QMC
hyperinterpolation of degree n = 5 in the approximation of f4,σ with σ = 0, 1, . . . , 4

are displayed in Figure 4.5, and the degree is intentionally set so small that error
curves corresponding to different σ can be distinguished. As we expect, the QMC
hyperinterpolation is better in terms of L2 errors if the function to be approximated
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is smoother.
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Figure 4.5: Convergence of the QMC hyperinterpolation in the approximation of
f4,σ with σ = 0, 1, 2, 3, 4.

Finally, we give a numerical example related to Remark 4.4.3 and Corollary
4.4.4 by considering the approximation of f4,σ. As we mentioned in Section 4.2.3, to
form a spherical t-design, m should satisfy m � td. Thus, to construct an original
hyperinterpolant Lnf of degree n on the 2-sphere S2 requires m to be of order n2,
and we have ‖Lnf − f‖L2 → 0 as n → ∞. According to Remark 4.4.3, m should
have a lower bound of order

(n+ 1)d+ε1n
d2

2s
+ε2

for any ε1, ε2 > 0 to imply ‖Qnf−f‖L2 → 0 as n→∞. The L2 errors with respect to
the degree n are depicted in Figure 4.6, and we letm = (n+1)2 and d(n+1)2n

2
σ+3/2 e.
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Figure 4.6: Performance of the QMC hyperinterpolation in the approximation of
f4,σ with m = (n+ 1)2 and m = d(n+ 1)2n

2
σ+3/2 e.

The choice of m = (n+ 1)2, which suffices to ensure the convergence of the original
hyperinterpolation as n→∞, fails to imply the monotonic convergence of the QMC
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hyperinterpolation. The choice of

m = d(n+ 1)2n
2

σ+3/2 e, (4.5.2)

according to our theory, can ensure the convergence of Qnf as n→∞, as shown in
Figure 4.6. It may be strange to find that a larger σ leads to a larger error level; this
is due to the choice (4.5.2) of m: a larger σ implies a smaller m.

By Corollary 4.4.4, if we let m & (n + 1)2n
2
s

+2, then we can expect ‖Qnf −
f‖L2 . n−s. This corollary is asserted by Figure 4.7, in which we investigate the
approximation of f4,2 using equal area points. We know that f4,2 ∈ H2+3/2(Sd),
thus we test on five choices of the number m, namely,

m = βd(n+ 1)2n
2+ 2

2+3/2 e

with β = 1, 2, 3, 4, 5. We see that the decaying rates of five choices all coincide with
n−(2+3/2). This observation suggests

‖Qnf4,2 − f4,2‖L2 . n−(2+3/2),

and more importantly, successfully verifies our theory on the QMC hyperinterpola-
tion.
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Figure 4.7: Convergence of the QMC hyperinterpolation in the approximation of
f4,2 with m been a multiple β of d(n+ 1)2n

2+ 2
σ+3/2 e for β = 1, 2, 3, 4, 5.
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Chapter 5

A spectral method for the
Allen–Cahn equation on spheres

Note: To respect the tradition of numerical PDEs that un always denotes the nu-
merical solution at time t = nτ , where τ is the time stepping size, we denote by N
the degree of orthogonal projection and hyperinterpolation in this chapter. Also, we
focus on Sd−1 ⊂ Rd instead of Sd in this chapter. Some preliminaries on Sd−1 will
be summarized again.

In this chapter, we propose a novel quadrature-based spectral method for solv-
ing the Allen–Cahn equation on spheres, without quadrature exactness. Instead of
assumptions on certain exactness degrees, we employ a restricted isometry relation
based on the Marcinkiewicz–Zygmund system of quadrature rules to quantify the
quadrature error of polynomial integrands. The new method only assumes some
conditions on the polynomial degree of numerical solutions to derive the maximum
principle and energy stability, and thus it is substantially different from methods in
the literature which usually require stringent conditions on the time stepping size,
a prior assumption on the Lipschitz continuity of the nonlinear term in the equa-
tion, or the L∞ boundedness of the numerical solutions. Hence, the new method is
practically suitable for long-time simulations. Further, we develop an almost sharp
maximum principle that allows controllable deviation of numerical solutions from the
sharp bound, and show that the new method is energy stable and equivalent to the
Galerkin method if the quadrature rule exhibits sufficient exactness degrees. In ad-
dition, we propose an energy-stable mixed-quadrature scheme which works well even
with randomly sampled initial condition data. We validate the theoretical results
about the energy stability and the almost sharp maximum principle by numerical
experiments on the 2-sphere S2.
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5.1 Introduction

We are interested in computing smooth solutions of stiff, semi-linear partial differ-
ential equations (PDEs) on the unit sphere Sd−1 := {x ∈ Rd : ‖x‖2 = 1} ⊂ Rd with
dimension d ≥ 3 of the form

ut = Lu+ N(u), u(0, x) = u0(x), (5.1.1)

where u = u(t, x) with (t, x) ∈ [0,∞) × Sd−1 is a function of time t and spatial
variable x ∈ Sd−1, L is a constant-coefficient linear differential operator, and N

is a constant-coefficient nonlinear differential (or non-differential) operator of lower
order. Many applications in science and engineering, especially simulations of the
combination of two or more different physical processes, requires smooth solutions
of specific cases of (5.1.1). In this chapter, we focus on the Allen–Cahn equation

ut = ν2∆u− F ′(u), u(0, x) = u0(x), (5.1.2)

where ∆ is the Laplace–Beltrami operator, but the main techniques to be devel-
oped can be extended to more general cases. Introduced by Allen and Cahn in [5]
for describing the process of phase separation in iron alloys, the Allen–Cahn equa-
tion (5.1.2) is a reaction-diffusion equation with a linear diffusion term ν2∆u and a
nonlinear reaction term F ′(u). In (5.1.2), u = u(t, x) is a scalar function typically
representing the concentration of one of the two metallic components of the alloy.
The nonlinear term has the usual double well form of

F ′(u) = f(u) = u3 − u

with
F (u) =

1

4
(u2 − 1)2.

We will also focus on the stiff case of ν � 1; namely, numerical methods for solving
the equation (5.1.2) may be numerically unstable unless the time step size depending
on ν is taken to be extremely small. Since stable solutions are always necessary for
long-time simulations of the Allen–Cahn equation (5.1.2) as well as many other
phase-field models, we aim at developing numerical methods which are stable with
large time step sizes.

The Allen–Cahn equation (5.1.2) possesses two intrinsic properties, namely, en-
ergy stability and the maximum principle. We consider the energy functional

E(u) :=

∫
Sd−1

(
1

2
ν2|∇u|2 + F (u)

)
dωd, (5.1.3)
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where dωd is the surface measure on Sd−1, i.e.,
∫
Sd−1 dωd = |Sd−1| denotes the surface

area of Sd−1. As an L2-gradient flow, E is a decreasing function of the time t in the
sense of

dE(u(t))

dt
= −‖ut‖2L2 ≤ 0.

Therefore, for smooth solutions of the equation (5.1.2), it holds that the energy decay

E(u(t, ·)) ≤ E(u(s, ·))

for any 0 ≤ s ≤ t <∞. Moreover, due to the particular structure of the Allen–Cahn
system (5.1.2), we also have the L∞ maximum principle for the solution to (5.1.2).
That is, if the L∞ norm of u0 is bounded by some constant, then that of the entire
solution should also be bounded by this constant.

For the Allen–Cahn equation (5.1.2) and many related phase-field models, vari-
ous numerical methods have been proposed to preserve energy stability and the sharp
maximum principle. For the literature on ensuring the (modified) energy stability
and preserving the maximum principle in numerical simulations of the Allen–Cahn
equation (5.1.2) and related phase field models, we refer to, e.g., [19, 25, 29, 57, 76,
77, 78, 80, 85, 86, 87, 88, 132, 193, 207, 241] and references therein. Although pre-
serving both properties is highly desirable for numerical simulations, sometimes only
modified energy stability can be analyzed, and some unwanted stringent conditions
on the numerical schemes are always introduced, such as small time stepping sizes
that depend on ν. These conditions increase the simulation time unfavorably. For
finite difference schemes, it was analyzed in [211] that discrete energy stability holds
for 0 < τ ≤ 1/2 and it was further extended to spectral methods for 0 < τ ≤ 0.86 in
[131].

5.1.1 Motivation

In this chapter, we propose a quadrature-based spectral method for the Allen–Cahn
equation (5.1.2) on Sd−1 by treating all numerical solutions as spherical polynomi-
als of degree N . These polynomials of degree N are allowed to deviate from the
sharp bound of the initial data by a controllable discretization error. Our three-fold
motivation arise from the practical simulation of the Allen–Cahn equation (5.1.2).

As introduced, many numerical schemes assume a small time stepping size de-
pending on ν. Meanwhile, though there are many methods (see, e.g., [23, 184, 192])
provide unconditional stability results for any time stepping size, their analysis ex-
plicitly relies on a Lipschitz assumption on the nonlinearity term or certain a priori
L∞ bounds on the numerical solutions. Thus our first motivation for considering
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spectral methods is to remove all these stringent and technical conditions and es-
tablish a more reasonable analysis by imposing conditions onto the degree N solely.
The degree N is independent of the time stepping size. This idea is motivated by
a recent work [131], in which an effective maximum principle was proposed. This
principle is an almost sharp maximum principle allowing the numerical solutions to
deviate from the sharp bound by a controllable discretization error without introduc-
ing stringent conditions on the numerical scheme. Such an approach sounds practical
and reasonable for numerical analysis.

Our second motivation arises from the sampling process in fully discrete practical
simulation, which involves the usage of projection operators and numerical integra-
tion. There are several methods for discretizing the spatial part of the Allen–Cahn
equation (5.1.2) with spectral accuracy. For equations on Sd−1 investigated in this
chapter, we consider spherical harmonics [15, 151]. One of the main reasons is that
spherical harmonics are eigenfunctions of the negative Laplace–Beltrami operator on
the sphere, and thus we can avoid the discretization of differential operators.

In [131], the following implicit-explicit spectral scheme
un+1 − un

τ
= ν2∆un+1 − PN

(
(un)3 − un

)
, n ≥ 0,

u0 = PNu0

(5.1.4)

was proposed for the Allen–Cahn equation (5.1.2) with periodic boundary conditions,
where τ > 0 is the size of time step, un denotes the numerical solution at time
t = nτ , and the operator PN projects any periodic function to its first N -modes.
For the cases of no boundary (such as on compact manifolds) and non-periodic
boundary conditions, we can project an L2 function onto the space PN of polynomials
of degree at most N . In particular, on Sd−1, a convenient L2-orthonormal basis
(with respect to dωd) for PN := PN (Sd−1) is provided by the spherical harmonics
{Y`,k : k = 1, 2, . . . Z(d, `); ` = 0, 1, 2, . . . , N} with dimension dimPN = Z(d+ 1, N),
where

Z(d, 0) = 1, Z(d, `) = (2`+ d− 2)
Γ(`+ d− 2)

Γ(d− 1)Γ(`+ 1)
∼ 2

Γ(d− 1)
`d−2 as `→∞.

The orthogonal projection is defined as

PNf =

N∑
`=0

Z(d,`)∑
k=1

〈f, Y`,k〉Y`,k, (5.1.5)
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with the inner product defined as

〈v, z〉 :=

∫
Sd−1

vzdωd. (5.1.6)

The scheme (5.1.4) is equivalent to the Galerkin scheme〈
un+1 − un

τ
, χ

〉
=
〈
ν2∆un+1, χ

〉
−
〈
(un)3 − un, χ

〉
∀χ ∈ PN . (5.1.7)

However, for practical simulations, the inner products in either the Galerkin scheme
(5.1.7) or the orthogonal projection operator (5.1.5) occurred in the scheme (5.1.4)
should be evaluated by some quadrature rules. For example, an m-point positive-
weight spherical quadrature rule takes the form of

m∑
j=1

wjg(xj) ≈
∫
Sd−1

gdωd, (5.1.8)

where quadrature points xj ∈ Sd−1 and weights wj > 0 for j = 1, 2, . . . ,m. For nu-
merical integration on the sphere, we refer the reader to [111]. Thus, we are intrigued
to investigate how the effective maximum principle behaves after the evaluation of
inner products by some quadrature rules. Such investigation is also critical because
the analysis of the scheme (5.1.4) may not properly quantify the actual behavior of
the numerical solutions. In the practice of spectral methods, the quadrature rules
are always chosen to have the exactness degree of 2N , that is,

m∑
j=1

wjg(xj) =

∫
Sd−1

gdωd ∀g ∈ P2N . (5.1.9)

Our third motivation arises from the following question: What if we do not have
full access to the initial data u0 but only a set of samples {u0(xj)}mj=1 whose data sites
{xj}mj=1 cannot be determined by us? In this case, the quadrature rule (5.1.8) with
points {xj}mj=1 might not have the desired exactness (5.1.9), but we need to investi-
gate the behavior of the numerical solutions. On the one hand, such a consideration
comes in line with the trend of interest in the numerical analysis community that
the necessity of quadrature exactness should be re-accessed, because what matters in
practice is the accuracy for integrating non-polynomial functions, see, e.g., [12, 222].
On the other hand, even when the quadrature rule (5.1.8) with exactness can be used,
this investigation is still necessary, as explained below. Numerical integration on sur-
faces is quite different from the Euclidean space. On the one-dimensional Euclidean
interval [−1, 1], for example, we have Gauss quadrature rules. When the dimension
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increases, we can at least consider tensor products to construct quadrature rules with
high exactness degrees. However, the situation is different on surfaces. Let us take
the sphere as an example. A spherical t-design, introduced in [69], is a set of points
{xj}mj=1 ⊂ Sd−1 with the characterizing property that an equal-weight quadrature
rule in these points exactly integrates all polynomials of degree at most t, that is,

|Sd−1|
m

m∑
j=1

χ(xj) =

∫
Sd−1

χ(x)dωd(x) ∀χ ∈ Pt.

Therefore, the quadrature rule (5.1.8) with quadrature points as a spherical 2N -
design satisfies the quadrature exactness assumption. It was even verified in [28]
that for each m ≥ ctd−1 with some positive but unknown constant c > 0, there
exists a spherical t-design in Sd−1 consisting of m points. However, the distribution
of a spherical t-designs is still unknown. In order to link spherical t-designs to
numerical analysis, the distribution of spherical t-designs is obtained by solving some
equivalent optimization problems, and the table of computed spherical t-designs are
reserved for further applications in approximation theory and numerical analysis.
Some equivalent optimization problems are given in [7, 59, 233]. However, this table
only contains the distributions of spherical t-designs of a limited range of t; for large t,
it is very time-consuming to solve the corresponding optimization problems. This fact
also explains our third motivation: if we do not have the points distribution leading to
high-degree quadrature exactness at hand, we should use point distributions without
quadrature exactness.

5.1.2 Our Scheme

Consider discretizing the orthogonal projection operator PN directly in the scheme
(5.1.4) as

LNf =
N∑
`=0

Z(d,`)∑
k=1

〈f, Y`,k〉mY`,k, (5.1.10)

where

〈v, z〉m :=
m∑
j=1

wjv(xj)z(xj) (5.1.11)

is a “discrete version” of the L2 inner product (5.1.6). This is a fully discrete scheme.
Note that the operator (5.1.10) is now always referred to as the hyperinterpolation
operator, which was originally introduced by Sloan in [196] (cf. Chapters 2–4).
Hence, for the Allen–Cahn equation (5.1.2) on the sphere Sd−1, we propose the
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following scheme:
un+1 − un

τ
= ν2∆un+1 − LN

(
(un)3 − un

)
, n ≥ 0,

u0 = LNu0.

(5.1.12)

Recall that spherical harmonics are eigenfunctions of the negative Laplace–Beltrami
operator. The scheme (5.1.12) is already fully discrete because there is no need
to discretize the Laplace–Beltrami operator. Moreover, implementing the scheme
(5.1.12) involves updating the coefficients of the numerical solution un, and it requires
only vector-matrix multiplications. During each time evolution from n to n+ 1, we
need to evaluate the coefficients of the hyperinterpolant LN ((un)3−(un)), which can
be accomplished in dimPN + 2m floating point operations (flops). We also need to
update the coefficients of un+1, which can be done in 3 dimPN flops. Therefore, each
time evolution of the scheme (5.1.12) can be achieved in 2 ((m+ 1)(dimPN ) +m)

flops, allowing us to achieve the theoretical benefits of the Galerkin method (5.1.7)
at a computational cost comparable to the collocation method.

In [196], the construction of hyperinterpolation relies on the quadrature exact-
ness (5.1.9). However, recent works in [11, 12] has relaxed and even bypassed this
assumption. In this chapter, the quadrature exactness (5.1.9) is not a necessary
assumption on our scheme; we only make the following three natural and simple
assumptions:

Assumption 5.1.1 For the quadrature rule (5.1.8), we assume that

(I) it integrates all constants exactly; namely,
∑m

j=1wj =
∫
Sd−1 dωd = |Sd−1|;

(II) {(xj , wj)}mj=1 forms a Marcinkiewicz–Zygmund (MZ) system of order 2 with
respect to PN ; namely, for every N ≥ 0 and χ ∈ PN , there exists a constant
η < 1, independent of χ and N , such that∣∣∣∣∣∣

m∑
j=1

wjχ(xj)
2 −

∫
Sd−1

χ2dωd

∣∣∣∣∣∣ ≤ η
∫
Sd−1

χ2dωd ∀χ ∈ PN ; (5.1.13)

(III) it converges to
∫
Sd−1 gdωd as m→∞ for all g ∈ C(Sd−1).

Assumption (I) holds if the quadrature rule (5.1.8) is equal-weight, that is,
wj = |Sd−1|/m for all j = 1, 2, . . . ,m, or of the quadrature rule (5.1.8) has exactness
degree at least one. If this assumption does not hold, we only need to replace the
term |Sd−1| in our theoretical results to

∑m
j=1wj . Assumption (II) is equivalent

to the Marcinkiewicz–Zygmund inequality, which has been heavily investigated in
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[89, 143, 146]. From a numerical perspective, Assumption (II) merely indicates that
the relative error of evaluating the integral of χ2 via the rule (5.1.8) should be less
than one for any χ ∈ PN . Moreover, it should be noted that Assumption (II)
implies m→∞ as N →∞. Assumption (III) is a natural assumption regarding the
performance of quadrature rules.

5.1.3 Outline of the chapter

In the chapter, we investigate the L∞ stability and energy stability for the scheme
(5.1.12), and also explore the effective maximum principle for this scheme. In the
next section, we introduce some preliminaries on spherical harmonics and the Sobolev
space on the sphere. In Section 5.3, for the scheme (5.1.12) with quadrature rules
(5.1.8) only fulfilling Assumption 5.1.1, we establish the L∞ stability for 0 < τ < 2

and effective maximum principle for 0 < τ ≤ 1/2. In Section 5.4, we demonstrate
that if the quadrature exactness (5.1.9) is assumed, then our scheme (5.1.12) is
equivalent to a fully discrete Galerkin method and it has discrete energy stability
for 0 < τ ≤ 0.86. Moreover, if the quadrature rule (5.1.8) is assumed to have
exactness degree of 4N , we demonstrate the stability of the original energy (5.1.3).
Our theoretical assertions are verified by some numerical experiments on the unit
sphere S2 in Section 5.5.

5.2 Preliminaries

We are concerned with real-valued functions on the sphere Sd−1 in the Euclidean
space Rd for d ≥ 3. For the case of d = 2, since S1 can be regarded as a special case
of the one-dimensional torus, we refer the reader to the case of tori in [131].

5.2.1 Geometric properties of point distributions

A critical assumption in Assumption 5.1.1 is that the set of {(xj , wj)}mj=1 is assumed
to form an MZ system of order 2 with respect to PN . A natural concern is under
what conditions can the assumption holds. This assumption is related to the quality
of distribution of quadrature points Xm := {xj}mj=1. We define the mesh norm hXm

of the quadrature point set Xm ⊂ Sd−1 as

hXm := max
x∈Sd−1

min
xj∈Xm

dist(x, xj),

where dist(x, y) := cos−1(x ·y) is the geodesic distance between x, y ∈ Sd−1. In other
words, the mesh norm can be regarded as the geodesic radius of the largest hole in
the mesh Xm. Thus, it was investigated in [89, 146] that the Assumption (II) in
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Assumption 5.1.1 holds if
N .

η

2hXm
. (5.2.1)

This assumption holds even when Xm consists of random points. When the quadra-
ture rule (5.1.8) is equal-weight, it was shown in [126] that if an independent random
sample of m points drawn from the distribution ωd, then there exists a constant
c̄ := c̄(γ) such that the MZ inequality (5.1.13) holds with probability exceeding
1− c̄N−γ on the condition of

m ≥ c̄N
d−1 logN

η2
.

5.2.2 Spherical harmonics and hyperinterpolation

The restriction to Sd−1 of a homogeneous and harmonic polynomial of total degree
` defined on Rd is called a spherical harmonic of degree ` on Sd−1. We denote, as
usual, by {Y`,k : k = 1, 2, . . . , Z(d, `)} a collection of L2-orthonormal real-valued
spherical harmonics of exact degree `. Besides, it is well known (see, e.g., [151, pp.
38–39]) that each spherical harmonic Y`,k of exact degree ` is an eigenfunction of the
negative Laplace–Beltrami operator −∆ for Sd−1 with eigenvalue

λ` := `(`+ d− 2). (5.2.2)

The family {Y`,k} of spherical harmonics forms a complete L2-orthonormal (with
respect to ωd) system for the Hilbert space L2(Sd−1). Thus, for any f ∈ L2(Sd−1),
it can be represented by a Laplace–Fourier series

f(x) =
∞∑
`=0

Z(d,`)∑
k=1

f̂`,kY`,k(x)

with coefficients
f̂`,k := 〈f, Y`,k〉 =

∫
Sd−1

f(x)Y`,k(x)dωd(x)

for ` = 0, 1, 2, . . . and k = 1, 2, . . . , Z(d, `).

The space PN := PN (Sd−1) of all spherical polynomials of degree at most N
(i.e., the restriction to Sd−1 of all polynomials in Rd of degree at most N) coincides
with the span of all spherical harmonics up to (and including) degree N , and its
dimension satisfies

dimPN = Z(d+ 1, N) = O(Nd−1).
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The space PN is also a reproducing kernel Hilbert space with the reproducing kernel

GN (x, y) =
N∑
`=0

Z(d,`)∑
k=1

Y`,k(x)Y`,k(y) (5.2.3)

in the sense that
〈χ,GN (·, x)〉 = χ(x) ∀χ ∈ PN (Sd−1);

see, e.g., [176]. The following lemma, occurred in the proof of Theorem 5.5.2 in [203],
plays a critical role in our following analysis.

Lemma 5.2.1 ([203]) For any given point x0 ∈ Sd−1, there holds

‖GN (x0, ·)‖2L2 =
Z(d+ 1, N)

|Sd−1|
.

Given f ∈ C(Sd−1), it is often simpler in practice to express the hyperinterpolant
LNf using the reproducing kernel GN (·, ·) defined by (5.2.3). By rearranging the
summation,

LNf(x) =
N∑
`=0

Z(d,`)∑
k=1

 m∑
j=1

wjf(xj)Y`,k(xj)

Y`,k(x) =
m∑
j=1

wjf(xj)GN (x, xj).

Lemma 5.2.2 The norm of the hyperinterpolation operator constructed using quadra-
ture rules (5.1.8) fulfilling Assumption 5.1.1 in the setting of C(Sd−1) to C(Sd−1) is
bounded by

‖LN‖∞ := sup
f∈C(Ω)

‖LNf‖∞
‖f‖∞

= O
(√

1 + ηN
d−1
2

)
. (5.2.4)

Proof. It was derived in [203] that

‖LN‖∞ ≤ |Sd−1|1/2
 m∑
j=1

wjGN (x0, xj)
2

1/2

,

where x0 ∈ Sd−1 is a certain point. Since {(xj , wj)}mj=1 forms an MZ system of order
2 (Assumption II), we have

‖LN‖∞ ≤|Sd−1|1/2
(

(1 + η)

∫
Sd−1

GN (x0, x)2dωd(x)

)1/2

≤|Sd−1|1/2
√

1 + η‖GN (x0, ·)‖L2

≤
√

1 + η(dimPN )1/2 = O
(√

1 + ηN
d−1
2

)
,
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where in the last inequality we use Lemma 5.2.1. �

Remark 5.2.3 The following historical note partly explains the impact of discretiz-
ing the inner products (5.1.6) via some quadrature rules (5.1.8). The uniform oper-
ator norm of PN satisfies

‖PN‖∞ � N
d−2
2 ,

and the case of S2 (d = 3) can be dated back to Gronwall [103]. However, the uniform
norm ‖LN‖∞ of the hyperinterpolation operator constructed using quadrature rules
(5.1.8) with quadrature exactness (5.1.9) is bounded as

‖LN‖∞ = O(n
d−1
2 ).

That is, the rate of growth of the uniform norm ‖LN‖∞ of the hyperinterpolation
operator with quadrature exactness (5.1.9) , as shown in [203] that is worse by a
factor of n1/2 than the optimal result for PN . Only for the special case of d = 3

and under a mild additional assumption on the quadrature rule (5.1.8), the improved
result of ‖LN‖∞ � n1/2 was achieved in [203].

5.2.3 Sobolev spaces

The study of hyperinterpolation in a Sobolev space setting can be traced back to the
work [110] by Hesse and Sloan. We define the the Sobolev space for s ≥ 0 as the set
of all functions f ∈ L2(Sd−1) whose Laplace–Fourier coefficients satisfy

∞∑
`=0

Z(d,`)∑
k=1

(1 + λ`)
s|f̂`,k|2 <∞,

where λ` is given as (5.2.2). When s = 0, we have H0(Sd−1) = L2(Sd−1). The norm
in Hs(Sd−1) is therefore defined as

‖f‖Hs :=

 ∞∑
`=0

Z(d,`)∑
k=1

(1 + λ`)
s|f̂`,k|2

1/2

.

The following lemma is necessary for our analysis, which was first presented in
[110].

Lemma 5.2.4 For any f ∈ PN ,

‖f‖Hs ≤ c1N
s‖f‖L2 ,
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where c1 > 0 is a constant.

Denote L>N := I − LN . The behavior of L>N in the ‖ · ‖∞ sense is described
as follows.

Lemma 5.2.5 Given f ∈ C(Sd−1) and t > d−1
2 , the stability of L>N as an operator

from C(Sd−1) to C(Sd−1) can be controlled by

‖L>Nf‖∞ ≤ (1 + ‖LN‖∞)EN (f) + c2ηN
t‖χ∗‖L2 ,

where c2 > 0 is a constant only depending on η, EN (f) = infχ∈PN ‖f −χ‖∞ denotes
the best uniform approximation error of f in PN , χ∗ ∈ PN is the best approximation
of f in PN such that ‖f − χ∗‖∞ = EN (f). Furthermore, we have

‖L>Nf‖∞ ≤
(
1 + ‖LN‖∞ + c2ηN

t
)
EN (f) + c2ηN

t‖f‖∞. (5.2.5)

Proof. For any χ ∈ PN , we have

L>Nf = f − LNf = f − χ− LN (f − χ)− (LNχ− χ),

and hence

‖f − LNf‖∞ ≤ ‖f − χ‖∞ + ‖LN‖∞‖f − χ‖∞ + ‖LNχ− χ‖∞,

Since this holds for arbitrary χ ∈ PN , we have

‖LNχ− f‖∞ ≤ (1 + ‖LN‖∞)EN (f) + ‖LNχ∗ − χ∗‖∞.

Then we control the term ‖LNχ∗ − χ∗‖∞ with the aid of the Sobolev embedding of
Ht(Sd−1) into C(Sd−1) for any t > d−1

2 . Thus, by Lemma 5.2.4,

‖LNχ∗ − χ∗‖∞ .‖LNχ∗ − χ∗‖Ht

≤c1N
t‖LNχ∗ − χ∗‖L2

≤c1N
t
√
η2 + 4η‖χ∗‖L2

≤c2ηN
t,

where we use the fact that

‖LNχ− χ‖2L2 ≤ (η2 + 4η)‖χ‖2L2
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for any χ ∈ PN , which was proved in Lemma 4.3.1 The estimate (5.2.5) is immedi-
ately obtained by noting that ‖χ∗‖∞ ≤ ‖f‖∞ + EN (f). �

5.3 L∞ stability and effective maximum principle

We now study the L∞ stability and effective maximum principle of the spectral
scheme (5.1.12) with quadrature rules (5.1.8) fulfilling Assumption 5.1.1 for the
Allen–Cahn equation (5.1.2) on Sd−1 ⊂ Rd. A key observation is that for f ∈
Hs(Sd−1) with s > d−1

2 , the best approximation error EN (f) in PN can be bounded
as

EN (f) ≤ c3(f)

N s− d−1
2

‖f‖Hs ,

where c3(f) > 0 is some constant depending on f ; such an error rate can be obtained
by [171] together with the Sobolev embedding into Hölder spaces.

5.3.1 The case of 0 < τ ≤ 1/2

We first consider the case of 0 < τ ≤ 1/2.

Theorem 5.3.1 (L∞ stability for 0 < τ ≤ 1/2) Let 0 < α0 ≤ 1, 0 < τ ≤ 1/2,
and s0 be a constant marginally larger than (d − 1)/2. Assume u0 ∈ Hs(Sd−1)

with s > d − 1 and ‖u0‖∞ ≤ 1. If η = c̃N−ε for any c̃ ≥ 0 and ε > s0 and
N ≥ N1 := N1 (α0, ν, s, d, u0, ε), then

sup
n≥0
‖un‖∞ ≤ 1 + α0.

Proof. This theorem is proved by induction.

Step 1: Initial data. As L>N = I − LN , by Lemmas 5.2.2 and 5.2.5 we have

‖LNu0‖∞ ≤‖u0‖∞ + ‖L>Nu0‖∞
≤1 + (1 + ‖LN‖∞)EN (u0) + c2ηN

s0‖χ∗‖L2

≤1 + c3

(
1 +

√
1 + η(dimPN )1/2)

)
N−(s− d−1

2
)‖u0‖Hs + c2ηN

s0‖χ∗‖L2

≤1 + c̃3(1 +
√

2N
d−1
2 )N−(s− d−1

2
)‖u0‖Hs + c2c̃N

−ε+s0‖χ∗‖L2

≤1 + α0

if N ≥ N ′1(α0, s, d, ‖u0‖Hs , ε) is large enough such that

c̃3(1 +
√

2N
d−1
2 )N−(s− d−1

2
)‖u0‖Hs + c2c̃N

−ε+s0‖χ∗‖L2 ≤ α0, (5.3.1)
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where c̃3 > 0 is a constant stemming from dimPN = O(Nd−1).

Step 2: Induction. The inductive assumption is

‖un‖∞ ≤ 1 + α0.

We intend to show
un+1 ≤ 1 + α0.

Afterwards, repeating the argument for −un+1 gives

−(1 + α0) ≤ un+1.

Thus, we have
‖un+1‖∞ ≤ 1 + α0.

Note that the scheme (5.1.12) is equivalent to

(1− τν2∆)un+1 = un + τLN
(
un − (un)3

)
.

Denote un := 1 + ζn. Then the inductive assumption implies

−(2 + α0) ≤ ζn ≤ α0.

For ζn+1 := un+1 − 1, we have

(1− τν2∆)ζn+1 = ζn + τLN
(
(1 + ζn)− (1 + ζn)3

)
= ζn + τLN

(
−2ζn − 3(ζn)2 − (ζn)3

)
= ζn + τ

(
−2ζn − 3(ζn)2 − (ζn)3 − L>N (−2ζn − 3(ζn)2 − (ζn)3)

)
= (1− 2τ)ζn − τ(ζn)2(3 + ζn) + τL>N (2ζn + 3(ζn)2 + (ζn)3).

Note that 3 + ζn ≥ 1− α0 ≥ 0. Since

sup
1≤j≤n

‖uj‖∞ ≤ 1 + α0,

we can use the discrete smoothing estimate (cf. [134]) to the following iterated
scheme

un+1 = (I − τν2∆)−1un − (I − τν2∆)−1τLN (f(un))

=: T0u
n − τT0LN (f(un))

= T J+1
0 un−J − τ

J∑
j=1

T j+1
0 LN (f(un−j))− τT0LN (f(un)),
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where T0 := (I − τν2∆)−1, to show that

sup
1≤j≤n

‖uj‖Hs ≤ cν,u0,s,d,

where cν,u0,s,d is some constant depending only on µ, u0, s and d. As the following
analysis ensures sup1≤j≤n+1 ‖uj‖∞ ≤ 1 + α0, we also have ‖un+1‖Hs ≤ cν,u0,s,d in
the next iteration. By the maximum principle and Lemmas 5.2.2 and 5.2.5, we have

max ζn+1

≤ (1− 2τ)α0 + τ
∥∥L>N (2ζn + 3(ζn)2 + (ζn)3)

∥∥
∞

≤ (1− 2τ)α0 + τ
[(

1 +
√

1 + ηN
d−1
2 + c2ηN

s0
)
N−(s− d−1

2
)·

‖2ζn + 3(ζn)2 + (ζn)3‖Hs + c2ηN
s0‖2ζn + 3(ζn)2 + (ζn)3‖∞

]
≤ (1− 2τ)α0 + τ

(
N

d−1
2
−s +Nd−1−s +N

d−1
2

+s0−s−ε +N s0−ε
)
const(ν, u0, s, d)

≤ α0

if N ≥ N ′′1 (α0, ν, s, d, ε) is large enough, which leads to maxun+1 ≤ 1 + α0. Thus
this theorem is proved by letting N1 = max{N ′1, N ′′1 }. �

Remark 5.3.2 The situation (5.3.1) in our proof requires α0 > 0. This requirement
stems from the fact that the hyperinterpolation operator does not preserve the sharp
uniform bound. That is, ‖u0‖∞ ≤ 1 does not necessarily imply ‖LNu0‖∞ ≤ 1; see
Remark 5.2.3. In the following theorems, we may directly assume that ‖LNu0‖∞ ≤
1 + α0 for 0 ≤ α0 ≤ 1. Then α0 = 0 is possible because spectral error term brought
by hyperinterpolation has been explicitly recorded in such an assumption.

Theorem 5.3.3 (Effective maximum principle for 0 < τ ≤ 1/2) Let 0 < τ ≤
1/2 and s0 be a constant marginally larger than (d− 1)/2. Assume u0 ∈ Hs(Ω) with
s > d− 1 and ‖u0‖∞ ≤ 1 + α0 for some 0 ≤ α0 ≤ 1. If η = c̃N−ε for any c̃ ≥ 0 and
ε > s0 and N ≥ N2 := N2(ν, s, d, u0, ε), then for any n ≥ 1,

‖un‖∞ ≤ 1 + θnα0 +
1− θn

1− θ
τCν,u0,s,d

(√
1 + ηNd−1−s + ηN s0+ d−1

2
−s + ηN s0

)
,

(5.3.2)
where θ = 1 − 2τ , and Cν,u0,s,d > 0 is a constant depending on ν, u0, s, and d.
Consequently,

lim sup
n→∞

‖un‖∞ ≤ 1 +
1

2
Cν,u0,s,d

(√
1 + ηNd−1−s + ηN s0+ d−1

2
−s + ηN s0

)
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and
lim sup
N→∞

‖un‖∞ ≤ 1 + θnα0.

Proof. By the inductive step in the proof of Theorem 5.3.1, there exists N2 :=

N2(ν, s, d, u0, ε) > 0 such that for any N ≥ N2, we have the weakest estimate
supn≥0 ‖un‖∞ ≤ 2. Denote un := 1 + ζn and define αn := max ζn. Then by
repeating the procedure in the proof of Theorem 5.3.1, we have

αn+1 ≤ (1− 2τ)αn + τCν,u0,s,d

(√
1 + ηNd−1−s + ηN s0+ d−1

2
−s + ηN s0

)
where the constant Cν,u0,s,d > 0 depends on ν, u0, s, and d. Similar estimate also
holds for α̃n := max(−1 − un). Thus for θ = 1 − 2τ , iterating in n then gives the
effective maximum principle (5.3.2). Letting n→∞ and N →∞ leads to both limit
cases, respectively. �

5.3.2 When the step size τ exceeds 1/2

We now consider the case of 1/2 < τ < 2, with the aid of a prototype iterative
system investigated in [131, Lemma 3.3].

Lemma 5.3.4 (Prototype iterative system for the maximum principle) Let
0 < τ < 2 and p(x) = (1 + τ)x− τx3. Consider the recurrent relation

αn+1 := max
|x|≤αn

|p(x)|+ ζ, n ≥ 0,

where ζ > 0.

1. Case 0 < τ ≤ 1/2. Let α0 = 2. There exists an absolute constant ζ0 > 0

sufficiently small such that for all 0 ≤ ζ ≤ ζ0, we have 1 ≤ αn ≤ 2 for all n.

2. Case 1/2 < τ ≤ 2− ε0 for some 0 < ε0 ≤ 1. Let

α0 =
1

2

(
(1 + τ)3/2

√
3τ

· 2

3
+

√
2 + τ

τ

)
.

Then there exists a constant ζ0 > 0 depending only on ε0 such that if 0 < ζ ≤ ζ0,
then for all n ≥ 1, we have

(1 + τ)3/2

√
3τ

· 2

3
+ ζ ≤ αn ≤ α0.
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Remark 5.3.5 For τ ≥ 2, such a stability result does not hold; see counterexamples
provided in Remark 3.7 and Corollary 3.1 in [131].

Theorem 5.3.6 (L∞ stability for 1/2 < τ < 2) Let 1/2 < τ ≤ 2 − ε0 for some
0 < ε0 ≤ 1,

M0 =
1

2

(
(1 + τ)3/2

√
3τ

· 2

3
+

√
2 + τ

τ

)
,

and s0 be a constant marginally larger than (d − 1)/2. Assume u0 ∈ Hs(Sd−1)

with s > d − 1 and ‖u0‖∞ ≤ M0. If η = c̃N−ε for any c̃ ≥ 0 and ε > s0 and
N ≥ N3 := N3 (ε0, ν, s, d, u0, ε), then

sup
n≥0
‖un‖∞ ≤M0.

Remark 5.3.7 As suggested in [131], the boundM0 can be replaced with any number

M̃0 ∈

(
(1 + τ)3/2

√
3τ

,

√
2 + τ

τ

)
. (5.3.3)

Correspondingly, N3 in Theorem 5.3.6 should also depend on M̃0; or more precisely,
on its distance to the end points of the interval in (5.3.3).

Proof. We adopt the same induction setting in the proof of Theorem 5.3.1. Note
that

(1−τν2∆)un+1

= un − LNun + LN
(
(1 + τ)un − τ(un)3

)
= (un − LNun) +

(
(1 + τ)un − τ(un)3

)
− L>N

(
(1 + τ)un − τ(un)3

)
.

Recall p(x) = (1 + τ)x− τx3. Then by the maximum principle,

‖un+1‖∞ ≤‖un − LNun‖∞ + ‖p(un)‖∞ + ‖L>N
(
(1 + τ)un − τ(un)3

)
‖∞

≤‖un − LNun‖∞ +M0 − ζ + ‖L>N
(
(1 + τ)un − τ(un)3

)
‖∞,

where the estimates for ‖un −LNun‖∞ and ‖L>N
(
(1 + τ)un − τ(un)3

)
‖∞ are sim-

ilar to that in the proof of Theorem 5.3.3. Then the theorem then follows from
Lemma 5.3.4 and induction. �
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5.4 Refined results with quadrature exactness and re-
lated schemes

In this section, we demonstrate that our scheme (5.1.12) is equivalent to the discrete
Galerkin scheme if the quadrature exactness (5.1.9) is assumed. With such an as-
sumption, we can also investigate the energy stability of our scheme (5.1.12), which
is not mentioned in Section 5.3.

5.4.1 Discrete Galerkin method

It should be noted that though this chapter only focuses on the Allen–Cahn equation
(5.1.2), such equivalence also holds for other semi-linear partial differential equations
(5.1.1), namely, ut = Lu + N(u). In the spirit of our scheme (5.1.12), we consider
the following semi-discrete scheme

un+1 − un

τ
= Lun+1 + LN (N(un)) (5.4.1)

for the semi-linear PDE (5.1.1), where τ > 0 is the size of time stepping, and un ∈ PN
denotes the numerical solution at t = nτ . If the quadrature exactness (5.1.9) is
assumed, then the hyperinterpolation operator LN is a discrete projection operator
in the sense of

〈f − LNf, χ〉m = 0 ∀χ ∈ PN , (5.4.2)

and
LNχ = χ ∀χ ∈ PN ; (5.4.3)

both properties were shown in [196]. The scheme (5.4.1) is equivalent to

LN
(
un+1 − un

τ
− Lun+1 −N(un)

)
=
un+1 − un

τ
− Lun+1 − LN (N(un)) = 0,

obtained using the linearity of LN and the property (5.4.3). Then with the property
(5.4.2), we know〈

un+1 − un

τ
− Lun+1 −N(un), χ

〉
m

= 0 ∀χ ∈ PN ,

which is further equivalent to

1

τ

〈
un+1 − un, χ

〉
m

=
〈
Lun+1, χ

〉
m

+ 〈N(un), χ〉m ∀χ ∈ PN , (5.4.4)

the discrete Galerkin method for the scheme (5.4.1) on the quadrature points Xm.
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Focusing on the Allen–Cahn equation (5.1.2), the above discussion suggests that
if the quadrature exactness (5.1.9) is assumed, then our scheme (5.1.12) is equivalent
to

1

τ

〈
un+1 − un, χ

〉
m

=
〈
ν2∆un+1, χ

〉
m
−
〈
(un)3 − un, χ

〉
m
∀χ ∈ PN , (5.4.5)

with u0 = LNu0 ∈ PN . The scheme (5.4.5) describes a quadrature-based Galerkin
method, and it may be also known as the qualocation method, or more precisely,
quadrature-modified collocation method, firstly investigated by Sloan and Wendland
in [195, 201]. The motivation of the qualocation method is to design numerical
schemes achieving the theoretical benefits of the Galerkin method at a computational
cost comparable to the collocation method.

5.4.2 Refined results

An immediate consequence of the quadrature exactness (5.1.9) is η = 0. Thus we
have the following corollary of the theorems in Section 5.3. Note that if η = 0, then
N1, N2, and N3 do not necessarily depend on ε.

Corollary 5.4.1 Consider the scheme (5.1.12) for the Allen–Cahn equation (5.1.2)
on Sd−1, where the quadrature rule (5.1.8) has exactness degree at least 2N . Assume
u0 ∈ Hs(Sd−1) with s > d− 1. Then the following holds:

1. L∞ stability for 0 < τ ≤ 1/2. Let 0 < α0 ≤ 1 and 0 < τ ≤ 1/2. Assume
‖u0‖∞ ≤ 1. If N ≥ N4 := N4 (α0, ν, s, d, u0) , then

sup
n≥0
‖un‖∞ ≤ 1 + α0.

2. Effective maximum principle for 0 < τ ≤ 1/2. Let 0 < τ ≤ 1/2. Assume
‖u0‖∞ ≤ 1 + α0 for some 0 < α0 ≤ 1. If N ≥ N ′4 := N ′4(ν, s, d, u0), then for
any n ≥ 1,

‖un‖∞ ≤ 1 + θnα0 +
1− θn

1− θ
τCν,u0,s,dN

d−1−s,

where θ = 1− 2τ , and Cν,u0,s,d > 0 is a constant depending on ν, u0, s, and d.

3. L∞-stability for 1/2 < τ < 2. Let 1/2 < τ < 2− ε0 for some 0 < ε0 ≤ 1, and
let

M0 =
1

2

(
(1 + τ)3/2

√
3τ

· 2

3
+

√
2 + τ

τ

)
.
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Assume ‖u0‖∞ ≤M0. If N ≥ N ′′4 := N ′′4 (ε0, ν, s, d, u0), then

sup
n≥0
‖un‖∞ ≤M0.

Remark 5.4.2 Recall the historical note in Remark 5.2.3. If we consider the Allen–
Cahn equation (5.1.2) on S2, then the order of ‖LN‖∞ can be reduced by n1/2, and
the results in Corollary 5.4.1 can be improved correspondingly.

We then consider the energy stability of the numerical solutions in the presence
of quadrature exactness. Recall that the energy functional E(u) of u is defined as
(5.1.3) and its discrete version can be defined as

Ẽ(u) :=
m∑
j=1

wj

(
ν2

2
(∇u(xj) · ∇u(xj)) + F (u(xj))

)
, (5.4.6)

which is discretized by the quadrature rule (5.1.8).

Lemma 5.4.3 (Energy estimate) For any n ≥ 0, if the quadrature rule (5.1.8)
has exactness degree 2N , then the sequence {un}n≥0 generated by the scheme (5.1.12)
satisfies

Ẽ(un+1)− Ẽ(un) +

(
1

τ
+

1

2

) m∑
j=1

wj(u
n+1(xj)− un(xj))

2

≤ 3

2
max

{
‖un‖2∞, ‖un+1‖2∞

} m∑
j=1

wj(u
n+1(xj)− un(xj))

2,

(5.4.7)

where the discrete energy Ẽ(u) of u is given by (5.4.6). Furthermore, if the quadrature
rule (5.1.8) has exactness degree 4N , then the sequence {un}n≥0 generated by the
scheme (5.1.12) satisfies

E(un+1)− E(un) +

(
1

τ
+

1

2

)∫
Sd−1

(un+1 − un)2dωd

≤ 3

2
max

{
‖un‖2∞, ‖un+1‖2∞

}∫
Sd−1

(un+1 − un)2dωd,

(5.4.8)

where the energy E(u) of u is given by (5.1.3).

Proof. Note that

1

τ

∫
Sd−1

(un+1 − un)2dωd =

〈
un+1 − un

τ
, un+1 − un

〉
=
〈
ν2∆un+1 − LN

(
(un)3 − un

)
, un+1 − un

〉
= ν2

〈
∆un+1, un+1 − un

〉
−
〈
LN (f(un)) , un+1 − un

〉
.

(5.4.9)
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For the first term on the right-hand side of (5.4.9), the Green–Beltrami identity
suggests

ν2
〈
∆un+1, un+1 − un

〉
= −ν2

∫
Sd−1

∇un+1 · ∇(un+1 − un)dωd

=− ν2

2

(∫
Sd−1

|∇un+1|2dωd −
∫
Sd−1

|∇un|2dωd
∫
Sd−1

|∇(un+1 − un)|2dωd
)
.

(5.4.10)

Observing that all the integrands in the integrals and inner products (regarded as
integrals) in the above expressions (5.4.9) and (5.4.10) are polynomials of degree
at most 2N , these integrals and inner products can be replaced by their discrete
versions (5.1.8) and (5.1.11), respectively, with the assumption that the quadrature
exactness degree is assumed to be 2N or 4N .

Meanwhile, as

F (un+1) = F (un) + f(un)(un+1 − un) +
1

2
f ′(ξ)(un+1 − un)2,

where ξ lies between un and un+1, we then have

m∑
j=1

wjF (un+1(xj)) ≤
m∑
j=1

F (un(xj)) +
〈
f(un), un+1 − un

〉
m

+

(
3

2
max

{
‖un‖2∞, ‖un+1‖2∞

}
− 1

2

) m∑
j=1

wj(u
n+1(xj)− un(xj))

2

(5.4.11)

and ∫
Sd−1

F (un+1)dωd ≤
∫
Sd−1

F (un)dωd +
〈
f(un), un+1 − un

〉
+

(
3

2
max

{
‖un‖2∞, ‖un+1‖2∞

}
− 1

2

)∫
Sd−1

(un+1 − un)2dωd.
(5.4.12)

When the quadrature exactness degree is 2N , we know from (5.4.11) and the
discrete versions of equations (5.4.9) and (5.4.10) that
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Ẽ(un+1)− Ẽ(un) +
ν2

2

m∑
j=1

wj |∇(un+1(xj)− un(xj))|2

+

(
1

τ
+

1

2

) m∑
j=1

wj(u
n+1(xj)− un(xj))

2

≤3

2
max

{
‖un‖2∞, ‖un+1‖2∞

} m∑
j=1

wj(u
n+1(xj)− un(xj))

2

+
〈
f(un)− LN (f(un)), un+1 − un

〉
m
.

The property (5.4.2) suggests

〈
f(un)− LN (f(un)), un+1 − un

〉
m

= 0.

Hence the estimate (5.4.7) holds.

When the quadrature exactness degree is 4N , we know from (5.4.11), (5.4.9),
and (5.4.10) that

E(un+1)− E(un) +
ν2

2

∫
Sd−1

|∇(un+1 − un)|2dωd

+

(
1

τ
+

1

2

)∫
Sd−1

(un+1 − un)2dωd

≤3

2
max

{
‖un‖2∞, ‖un+1‖2∞

}∫
Sd−1

(un+1 − un)2dωd

+
〈
f(un)− LN (f(un)), un+1 − un

〉
.

(5.4.13)

We have

〈
f(un)− LN (f(un)), un+1 − un

〉
=
〈
f(un)− LN (f(un)), un+1 − un

〉
m
,

because the quadrature exactness degree is 4N , and by the property (5.4.2) again,
we have the estimate (5.4.8). �

Remark 5.4.4 Lemma 5.4.3 immediately suggests that if

1

τ
+

1

2
≥ 3

2
sup
n≥0
‖un‖2∞,

then
Ẽ(un+1) ≤ Ẽ(un)
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when the quadrature exactness degree is 2N , and

E(un+1) ≤ E(un)

when the quadrature exactness degree is 4N .

Remark 5.4.5 From the proof of Lemma 5.4.3, we can see that if we do not make the
quadrature exactness assumption, the terms

〈
f(un)− LN (f(un)), un+1 − un

〉
m

and〈
f(un)− LN (f(un)), un+1 − un

〉
cannot be guaranteed zero or negative. Thus we

cannot claim on the (discrete) energy decay of the numerical solutions generated by
(5.1.12). However, in practice, the estimate (5.4.13) may suggest that if we consider
a sufficiently large number m (depending on ν) of quadrature points to construct LN
such that

ν2

2

∫
Sd−1

|∇(un+1 − un)|2dωd ≥
〈
f(un)− LN (f(un)), un+1 − un

〉
,

one may still have energy stability; we do not rigorously investigate this numerical
issue in this chapter.

Theorem 5.4.6 (Energy stability for 0 < τ ≤ 1/2) Let 0 < τ ≤ 1/2. Assume
u0 ∈ Hs(Sd−1) with s > d−1 and ‖u0‖∞ ≤ 1. Then there exists N5 := N5(ν, s, d, u0)

such that for N ≥ N5, we have the discrete energy decay

Ẽ(un+1) ≤ Ẽ(un), n ≥ 0

if the quadrature rule (5.1.8) has exactness degree 2N , and the energy decay

E(un+1) ≤ E(un), n ≥ 0

if the quadrature rule (5.1.8) has exactness degree 4N .

Proof. Let α0 =
√

5
3 − 1 in Corollary 5.4.1. Then there exists N5(ν, s, d, u0) such

that for N ≥ N5,

sup
n≥0
‖un‖∞ ≤

√
5

3
.

Then there clearly holds

1

τ
+

1

2
≥ 5

2
≥ 3

2
sup
n≥0
‖un‖2∞,

and hence, by Lemma 5.4.3, we have both energy decaying estimates. �
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With the aid of Theorem 5.3.6 and Remark 5.3.7, we now derive the energy
stability result for τ ≥ 1/2. This result is only valid for 1/2 < τ < τ1 ≈ 0.86.
Consider the equation

1

2
+

1

x
=

3

2
·

(
2

3
· (1 + x)3/2

√
3x

)2

.

It is easy to check that

x = τ1 =
1

2

(
−2 + (9− 3

√
6)1/3 + (9 + 3

√
6)1/3

)
≈ 0.860018

is the unique real-valued solution to this equation. Thus, if

1/2 < τ ≤ τ1 − ε0,

where 0 < ε0 ≤ 0.1, then

1

2
+

1

τ
≥ 3

2

(
(1 + τ)3/2

√
3τ

· 2

3
+ ζ(ε0)

)2

, (5.4.14)

where ζ(ε0) > 0 only depends on ε0. Thus, we have the following theorem.

Theorem 5.4.7 (Energy stability for 1/2 < τ < τ1) Let 1/2 < τ ≤ τ1 − ε0 for
some 0 < ε0 ≤ 0.1, and let

M1 =
(1 + τ)3/2

√
3τ

· 2

3
+ ζ(ε0),

where ζ(ε0) is the same as the one in (5.4.14). Assume u0 ∈ Hs(Sd−1) with s > d−1

and ‖u0‖∞ ≤M1. If N ≥ N6 := N6(τ, ε0, ν, s, d, u0), then we have the discrete energy
decay

Ẽ(un+1) ≤ Ẽ(un), n ≥ 0

if the quadrature rule (5.1.8) has exactness degree 2N , and the energy decay

E(un+1) ≤ E(un), n ≥ 0

if the quadrature rule (5.1.8) has exactness degree 4N .

Proof. With η = 0, Theorem 5.3.6 and Remark 5.3.7 immediately suggest the L∞

stability of
sup
n≥0
‖un‖∞ ≤M1.
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In the light of the energy estimates in Lemma 5.4.3, it suffices to ensure

1

2
+

1

τ
≥ 3

2
M2

1 =
3

2

(
(1 + τ)3/2

√
3τ

· 2

3
+ η(ε0)

)2

,

which is exactly (5.4.14). �

5.4.3 An mixed quadrature-based scheme

Theoretical results in Section 5.3 suggest that our scheme (5.1.12) may not have
energy stability if the exactness of the quadrature (5.1.8) is not assumed. Recall
that our third motivation for proposing and investigating the scheme (5.1.12) is
that we may not have the luxury of obtaining samples of the initial condition from
quadrature points that we desire. However, we can consider the following mixed
quadrature-based scheme

un+1 − un

τ
= ν2∆un+1 − L̃N

(
(un)3 − un

)
, n ≥ 0,

u0 = LNu0,

(5.4.15)

where LN is constructed by quadrature rules (5.1.8) satisfying Assumption 5.1.1
only and L̃N is the hyperinterpolation operator constructed by quadrature rules with
quadrature exactness degree of 2N or 4N . Thus if u0 ∈ Hs(Sd−1) with s > d − 1,
s0 >

d−1
2 , and η = c̃N−ε for any c̃ ≥ 0 and ε > s0, then the performance of the

mixed quadrature-based scheme (5.4.15) can also be characterized by Corollary 5.4.1,
Theorem 5.4.6, and Theorem 5.3.6. The imposed assumptions only aim to guarantee
(5.3.1). Thus, with this mixed quadrature-based scheme, even for a set of scattered
data of u0, it is still possible to generate a sequence of numerical solutions quantified
by Corollary 5.4.1.

5.5 Numerical experiments

In this section we present some numerical experiments on the 2-sphere S2 ⊂ R3

to verify the analysis presented in the previous sections. It is worth noting that
|S2| = 4π. For simplicity, we consider quadrature rules (5.1.8) with equal-weight
weights

wj =
4π

m
, j = 1, 2, . . . ,m.

Numerous point sets on the sphere have been introduced in the literature. In our ex-
periments, we use the following points sets including randomly scattered points, equal
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area points, Fekete points, Coulomb energy points, and well-conditioned spherical
t-designs, with descriptions on these point set provided in Chapter 4. Fekete points
and Coulomb energy points are precomputed by R. Womersley and are available
on his website1. All codes were written by MATLAB R2022a, and all numerical
experiments were conducted on a laptop (16 GB RAM, Intel® CoreTM i7–9750H
Processor) with macOS Monterey 12.5.

We begin with an experiment that illustrates how the phases are separated using
the above-mentioned five different types of quadrature points. We set ν = 10−1 and

u(0, x, y, z) = cos(cosh(5xz)− 10y) (5.5.1)

and solve for u up to time t = 70. The numerical solution at times t = 0, 5, 10, 15, 70

are shown in Figure 5.1. The initial condition quickly converges to a metastable state
u ≈ ±1 (yellow area indicates u ≈ 1 whereas blue area indicates u ≈ −1) at time
around t = 10 (for equal area points, Coulomb energy points, and spherical t-designs)
and around t = 15 (for random points and Fekete points) and eventually to the stable
solution u = 1 at around t = 70. We note that random points may perform slightly
worse than points with certain properties, and the inferior performance of Fekete
points, as cautioned by Womersley on his website, may be due to the fact that all
computed Fekete points are only approximate local maximizers of the determinant for
polynomial interpolation. Nevertheless, this experiment suggests that our proposed
practical scheme (5.1.12) is a viable method, and we are confident in verifying our
theoretical analysis from the previous sections.

In our second experiment, we aim to test the effective maximum principle and
the L∞ stability of the numerical solutions generated by our scheme (5.1.12) using
quadrature rules without exactness. Namely, we verify our analysis in Section 5.3
using random points, equal area points, Fekete points, and Coulomb energy points.
The uniform norms ‖un‖∞ of the numerical solution un to the Allen–Cahn equation
(5.1.2) with ν = 0.1 and initial condition (5.5.1) are documented in Figure 5.2.
We theoretically demonstrate that if τ ≤ 1/2, then the effective maximum principle
holds, that is, for any fixed N , the upper bound of ‖un‖∞ decreases as time advances.
This principle suggests that although ‖un‖∞ may backtrack, it eventually decreases.
This is verified by the first column of Figure 5.2, in which τ = 0.5 ensures the effective
maximum principle. If 1/2 < τ < 2, then we know ‖un‖∞ is bounded by ‖u0‖∞,
which is illustrated by the second and third columns of Figure 5.2.

1Robert Womersley, Interpolation and Cubature on the Sphere, http://www.maths.unsw.edu.
au/~rsw/Sphere/; accessed in March, 2023.

http:// www.maths.unsw.edu.au/~rsw/Sphere/
http:// www.maths.unsw.edu.au/~rsw/Sphere/
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Figure 5.1: Numerical solution to the Allen–Cahn equation (5.1.2) with ν = 0.1 and
initial condition (5.5.1) using our scheme (5.1.12) with τ = 0.5, N = 15, and different
quadrature points. From top row to bottom row: m = b120N2 lnNc = 73, 117
random points; m = (2N + 1)2 = 961 equal area points; m = 961 Fekete points;
m = 961 Coulomb energy points; and m = 961 spherical 2N -designs.
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Figure 5.2: Uniform norms of the numerical solution to the Allen–Cahn equation
(5.1.2) with ν = 0.1 and initial condition (5.5.1) using our scheme (5.1.12) with
τ ∈ {0.5, 1, 1.99}, N ∈ {10, 16, 24}, and m = b120N2 lnNc for random points and
m = (2N + 1)2 for equal area points, Fekete points, and Coulomb energy points.
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In our third experiment, we investigate the energy decay of our numerical scheme
(5.1.12) and test the mixed quadrature-based scheme (5.4.15) discussed in Section
5.4. Since our analysis in Section 5.4 relies on quadrature exactness, we consider
spherical t-designs. Recall that for 0 < τ ≤ 0.86, our theoretical analysis demon-
strates that for sufficient large N , the scheme (5.1.12) using quadrature rules of
exactness degree 2N ensures discrete energy decay Ẽ(un+1) ≤ Ẽ(un) for n ≥ 0, and
it has energy decay E(un+1) ≤ E(un) for n ≥ 0 if the quadrature rule (5.1.8) has
exactness degree 4N . The energy profiles of the numerical solution un to the Allen–
Cahn equation (5.1.2) with ν = 0.1 and initial condition (5.5.1) are illustrated in
Figure 5.3. Despite the energy dissipation property holding for all cases, it seems
that the time step significantly influences the profile of energy evolution.
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Figure 5.3: Energy profiles of the numerical solution to the Allen–Cahn equation
(5.1.2) with ν = 0.1 and initial condition (5.5.1) using our scheme (5.1.12) with
τ ∈ {0.1, 0.5, 0.86} and N ∈ {12, 14, 16}. Top row: using spherical 2N -designs;
Bottom row: using spherical 4N -designs.

It is worth noting that quadrature exactness of degree at least 2N is necessary for
energy dissipation, as evidenced by the following counterexample. Figure 5.4 records
the energy evolution of the numerical solution to the Allen–Cahn equation (5.1.2)
with ν = 0.01 and initial condition (5.5.1) using our scheme (5.1.12) with τ = 0.86

and different values ofN . If the quadrature exactness is only of degreeN , as shown in
the top row of Figure 5.4, the discrete energy Ẽ(un) fails to dissipate, and increasing
N does not resolve this issue. On the other hand, if the quadrature exactness degree
is 2N , our refined analysis in Section 5.4 guarantees that discrete energy dissipation
always occurs, as demonstrated by the middle row of Figure 5.4. Furthermore, if we
consider the mixed quadrature-based scheme (5.4.15) proposed in Section 5.4, where
the hyperinterpolation operator with quadrature exactness N is used for projecting



Chapter 5. A spectral method for the Allen–Cahn equation on spheres 122

u0 to u0 and another hyperinterpolation operator with quadrature exactness 2N

is used in time evolution, then solutions generated by this scheme exhibit energy
dissipation, as shown in the bottom row of Figure 5.4.
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Figure 5.4: Energy profiles of the numerical solution to the Allen–Cahn equation
(5.1.2) with ν = 0.01 and initial condition (5.5.1) using our scheme (5.1.12) with
τ = 0.86 and N ∈ {20, 50, 80}. Top row: quadrature exactness of degree N ; Middle
row: quadrature exactness of degree 2N ; Bottom row: the mixed quadrature-based
scheme (5.4.15).
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Chapter 6

The springback model for signal
reconstruction

We propose a new penalty, the springback penalty, for constructing models to recover
an unknown signal from incomplete and inaccurate measurements. Mathematically,
the springback penalty is a weakly convex function. It bears various theoretical and
computational advantages of both the benchmark convex `1 penalty and many of its
non-convex surrogates that have been well studied in the literature. We establish
the exact and stable reconstruction theory for the reconstruction model using the
springback penalty for both sparse and nearly sparse signals, respectively, and derive
an easily implementable difference-of-convex algorithm. In particular, we show its
theoretical superiority to some existing models with a sharper reconstruction bound
for some scenarios where the level of measurement noise is large or the amount of
measurements is limited. We also demonstrate its numerical robustness regardless
of the varying coherence of the sensing matrix. The springback penalty is particu-
larly favorable for the scenario where the incomplete and inaccurate measurements
are collected by coherence-hidden or -static sensing hardware due to its theoretical
guarantee of reconstruction with severe measurements, computational tractability,
and numerical robustness for ill-conditioned sensing matrices.

6.1 Introduction

Signal reconstruction aims at recovering an unknown signal from its measurements,
which are often incomplete and inaccurate due to technical, economical, or physical
restrictions. Mathematically, a signal reconstruction problem can be expressed as
estimating an unknown x̄ ∈ Rn from an underdetermined linear system

b = Ax̄+ e, (6.1.1)
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where A ∈ Rm×n is a full row-rank sensing matrix such as a projection or transfor-
mation matrix (see, e.g., [37, 43, 44]), b ∈ Rm \ {0} is a vector of measurements,
e ∈ Rm is some unknown but bounded noise perturbation in

B(τ) := {e ∈ Rm : ‖e‖2 ≤ τ},

and the number m of measurements is considerably smaller than the size n of the
signal x̄. The set B(τ) encodes both the cases of noise-free (τ = 0) and noisy (τ > 0)
measurements.

Physically, a signal of interest, or its coefficients under certain transformation,
is often sparse (see, e.g., [37]). Hence, it is natural to seek a sparse solution to the
underdetermined linear system (6.1.1), though it may have infinitely many solutions.
We say that x ∈ Rn is s-sparse if ‖x‖0 ≤ s, where ‖x‖0 counts the number of nonzero
entries of x. To find the sparsest solution to (6.1.1), one may consider solving the
following minimization problem:

min
x∈Rn

‖x‖0 s.t. Ax− b ∈ B(τ), (6.1.2)

in which ‖x‖0 serves as a penalty term of the sparsity, and it is referred to as the
`0 penalty for convenience. Due to the discrete and discontinuous nature of the
`0 penalty, the model (6.1.2) is NP-hard [37]. This means the model (6.1.2) is
computationally intractable, and this difficulty has inspired many alternatives to the
`0 penalty in the literature. A fundamental proxy of the model (6.1.2) is the basis
pursuit (BP) problem proposed in [58]:

min
x∈Rn

‖x‖1 s.t. Ax− b ∈ B(τ). (6.1.3)

In this convex model,

‖x‖1 :=
n∑
i=1

|xi|

and it is called the `1 penalty hereafter. Recall that ‖x‖1 is the convex envelope
of ‖x‖0 (see, e.g., [180]), and it induces sparsity most efficiently among all convex
penalties (see [37]). The BP problem (6.1.3) has been intensively studied in volumi-
nous papers since the seminal works [42, 43, 74], in which various conditions have
been comprehensively explored for the exact reconstruction via the convex model
(6.1.3).

The BP problem (6.1.3) is fundamental for signal reconstruction, but its solution
may be over-penalized because the `1 penalty tends to underestimate high-amplitude
components of the solution, as analyzed in [83]. Hence, it is reasonable to consider
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non-convex alternatives to the `1 penalty and upgrade the model (6.1.3) to achieve
a more accurate reconstruction. In the literature, some non-convex penalties have
been well studied, such as the smoothly clipped absolute deviation (SCAD) [83], the
capped `1 penalty [244], the transformed `1 penalty [142, 243], and the `p penalty
with 0 < p < 1 [54, 55, 124]. Besides, one particular penalty is the minimax concave
penalty (MCP) proposed in [240], and it has been widely shown to be effective in
reducing the bias from the `1 penalty [240]. Moreover, the so-called `1−2 penalty has
been studied in the literature, e.g. [82, 238, 239], to mention a few. Some of these
penalties will be summarized in Section 6.2. In a nutshell, convex penalties are more
tractable in the senses of theoretical analysis and numerical computation, while they
are less effective for achieving the desired sparsity (i.e., the approximation to the `0
penalty is less accurate). Non-convex penalties are generally the opposite.

Considering the pros and cons of various penalties, we are motivated to find a
weakly convex penalty that can keep some favorable features from both the `1 penalty
and its non-convex alternatives, and the resulting model for signal reconstruction is
preferable in the senses of both theoretical analysis and numerical computation.
More precisely, we propose the springback penalty

RSPB
α (x) := ‖x‖1 −

α

2
‖x‖22, (6.1.4)

where α > 0 is a model parameter, and it should be chosen meticulously. We will
show later that a larger α implies a tighter stable reconstruction bound. On the other
hand, a too large αmay lead to negative values ofRSPB

α (x). Thus, a reasonable upper
bound on α should be considered to ensure the well-definedness of the springback
penalty (6.1.4). In the following, we will see that if the matrix A is well-conditioned
(e.g., when A is drawn from a Gaussian matrix ensemble), then the requirement on
α is quite loose; while if A is ill-conditioned (e.g., A is drawn from an oversampled
partial DCT matrix ensemble), then generally the upper bound on α should be
better discerned for the sake of designing an algorithm with theoretically provable
convergence. We refer to Theorem 6.3.2, Theorem 6.4.1, Section 6.5.2, and Section
6.6.2 for more detailed discussions on the determination of α for the springback
penalty (6.1.4) theoretically and numerically. With the springback penalty (6.1.4),
we propose the following model for signal reconstruction:

min
x∈Rn

RSPB
α (x) s.t. Ax− b ∈ B(τ). (6.1.5)

Mathematically, the springback penalty (6.1.4) is a weakly convex function, and thus
the springback-penalized model (6.1.5) can be intuitively regarded as an “average” of
the convex BP model (6.1.3) and the mentioned non-convex surrogates. Recall that
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a function f : Rn → R is α-weakly convex if x 7→ f(x)+ α
2 ‖x‖

2
2 is convex. One advan-

tage of the model (6.1.5) is that various results developed in the literature on weakly
convex optimization problems (e.g., [105, 148]) can be used for both theoretical anal-
ysis and algorithmic design. Indeed, the weak convexity of the springback penalty
(6.1.4) enables us to derive sharper reconstruction results with fewer measurements
and to design some efficient algorithms easily.

The rest of this chapter is organized as follows. In the next section, we sum-
marize some preliminaries for further analysis. In Sections 6.3 and 6.4, we establish
the exact and stable reconstruction theory of the springback-penalized model (6.1.5)
for sparse and nearly sparse signals, respectively. We also theoretically compare the
springback penalty (6.1.4) with some other penalties in these two sections. In Section
6.5, we design a difference-of-convex algorithm (DCA) for the springback-penalized
model (6.1.5) and study its convergence. Some numerical results are reported in
Section 6.6 to verify our theoretical assertions.

6.2 Preliminaries

In this section, we summarize some preliminaries that will be used for further anal-
ysis.

6.2.1 A glance at various penalties

In the literature, there are a variety of convex and non-convex penalties. Below we
list six of the most important ones, with x ∈ Rn.

� The `1 penalty [37, 58]:

R`1(x) := ‖x‖1 =
n∑
i=1

|xi|.

� The elastic net penalty [245]:

REL(x) := ‖x‖1 +
α

2
‖x‖22 =

n∑
i=1

|xi|+
α

2

n∑
i=1

|xi|2.

� The `p penalty with parameter 0 < p < 1 [54, 55]:

R`p(x) := ‖x‖pp =

n∑
i=1

|xi|p.
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� The transformed `1 (TL1) with parameter β > 0 [142, 243]:

RTL1
β (x) :=

n∑
i=1

(β + 1)|xi|
β + |xi|

.

� The minimax concave penalty (MCP) with parameter µ > 0 [240]:

RMCP
µ (x) :=

n∑
i=1

φMCP
µ (xi), (6.2.1)

where

φMCP
µ (xi) =

|xi| − x2
i /(2µ), |xi| ≤ µ,

µ/2, |xi| ≥ µ.

� The `1−2 penalty [82, 239]:

R`1−2(x) := ‖x‖1 − ‖x‖2 =
n∑
i=1

|xi| −

√√√√ n∑
i=1

|xi|2.

Note that the `1 penalty is convex, the elastic net penalty is strongly convex, and
the others are non-convex.

6.2.2 Relationship among various penalties

For any nonzero vector x ∈ Rn and α > 0, the springback penalty

RSPB
α (x)→ R`1(x)

as α→ 0. Besides, RSPB
α (x) is reduced to the MCP in [240] within the `∞-ball {x ∈

Rn : ‖x‖∞ ≤ µ} if α = 1/µ. The springback penalty appears to be a resemblance
to the `1−2 penalty, but their difference is many-sided. For instance, the gradient of
‖x‖2 is not defined at the origin.

Figure 6.1 displays some scalar (one-dimensional) penalties, including the `1
penalty, the `0.5 penalty, the transformed `1 penalty with β = 1, the MCP with
µ = 0.75, and the springback penalty with α = 1/µ and α = 0.15. The `1−2 penalty
is not plotted, as it is none other than zero in the one-dimensional case. To give a
better visual comparison, we scale them to attain the point (1, 1). It is shown in
Figure 6.1 that the springback penalty is close to the `1 penalty when α = 0.15.
The springback penalty with α = 1/µ coincides with the MCP for |x| ≤ µ if we
do not scale them. The behavior of the springback penalty for |x| > µ attracts our
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interest because it turns around and heads towards the x-axis. According to Figure
6.1, this behavior is clearer in terms of the thresholding operator corresponding to
the proximal mapping of the springback penalty, whose mathematical descriptions
are given in Section 6.2.3.
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Figure 6.1: Scalar penalties and corresponding thresholding operators (for repre-
senting proximal mappings with λ = 0.25): the `1 penalty and the soft thresholding
operator; the `p penalty, whose proximal mapping has no closed-form expressions
(hence no thresholding operator plotted); the transformed `1 penalty with β = 1,
whose proximal mapping can be expressed explicitly by a thresholding operator given
in [242]; the MCP with µ = 0.75 and the firm thresholding operator; and two spring-
back penalties with α = 1/µ and α = 0.15, and the springback thresholding operator.

As mentioned, the proposed springback penalty (6.1.4) balances the approxi-
mation quality of the `0 penalty and the tractability in analysis and computation,
and it is in between the convex and non-convex penalties. More specifically, it is
in between the `1 penalty and the MCP. For any x ∈ Rn, we can always find a pa-
rameter µ for the MCP such that ‖x‖∞ ≤ µ with a resulting penalty in the form of
‖x‖1−‖x‖22/(2µ). This penalty inherits the approximation quality of the `0 penalty
from the MCP and the analytical and computational advantages of the `1 penalty.
Inasmuch as this penalty, we consider the more general penalty (6.1.4) in which 1/µ

is replaced by a more flexible parameter α > 0.

6.2.3 Proximal mappings and thresholding operators

For a function R : Rn → R, as defined in [150], the proximal mapping of R is defined
as

proxλ [R] (x) := arg min
y∈Rn

{
λR(y) +

1

2
‖y − x‖22

}
, (6.2.2)

where λ > 0 is a regularization parameter. In (6.2.2), we slightly abuse the notation
“=”. This mapping takes a vector x ∈ Rn and maps it into a subset of Rn, which
might be empty, a singleton, or a set with multiple vectors; and the image of y under
this mapping is a singleton if the function R is proper closed and convex [20]. For
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a given optimization model, if the proximal mapping of its objective function has a
closed-form expression, then usually it is important and necessary to consider how
to take advantage of this feature for algorithmic design.

When the proximal mapping of a penalty can be represented explicitly, the
closed-form representation is often called a thresholding operator or a shrinkage op-
erator in the literature. For example, as analyzed in [242], with the soft thresholding
operator

soft(w;λ) = sgn(w) max{|w| − λ, 0},

which has been widely used in various areas such as compressed sensing and image
processing, the proximal mapping (6.2.2) of the `1 penalty can be expressed explicitly
by [

proxλ
[
R`1

]
(x)
]
i

= soft(xi;λ), i = 1, . . . , n.

The proximal mapping of a non-convex penalty, in general, does not have a
closed-form expression; such cases include the `1−2 penalty and the `p penalty with
0 < p < 1. However, there are some particular non-convex penalties whose proximal
mappings can still be represented explicitly. For instance, the transformed `1 penalty
[242] and the MCP [240]. In particular, with the following firm thresholding operator

firm(w;λ, µ) =


0, |w| ≤ λ,

sgn(w)µ(|w|−λ)
µ−λ , λ ≤ |w| ≤ µ,

w, |w| ≥ µ,

which was first proposed in [95], it was further studied in [240] that the proximal
mapping (6.2.2) of the MCP can be expressed explicitly by a firm thresholding op-
erator for the case of orthonormal designs. More specifically, the proximal mapping
(6.2.2) of the MCP is

[
proxλ

[
RMCP
µ

]
(x)
]
i

= firm(xi;λ, µ), i = 1, . . . , n.

Below, we show that for the springback penalty (6.1.4) with a well chosen α, its
proximal mapping can also be expressed explicitly.

Definition 6.2.1 The springback thresholding operator is defined as

springback(w;λ, α) =

0, |w| ≤ λ,

sgn(w) |w|−λ1−λα , |w| > λ.
(6.2.3)



Chapter 6. The springback model for signal reconstruction 130

Proposition 6.2.2 If 1 − λα > 0, then the proximal mapping of the springback
penalty (6.1.4) can be represented explicitly as

[
proxλ

[
RSPB
α

]
(x)
]
i

= springback(xi;λ, α), i = 1, . . . , n.

Proof. When R(x) = R`1(x), it follows from (6.2.2) that, for any z ∈ Rn satisfying
0 ∈ z − y + λ∂ (‖z‖1), there holds zi = soft(yi;λ), i.e., z = proxλ

[
R`1

]
(y). The

assumption 1−λα > 0 ensures ∇2
(

1
2‖x− y‖

2
2 − λα

2 ‖x‖
2
2

)
= (1−λα)I to be positive

definite. Thus, the optimization problem occurred in (6.2.2) is convex. WhenR(x) =

RSPB
α (x) in (6.2.2), for any z ∈ Rn satisfying the condition 0 ∈ z−y+λ∂(‖z‖1)−λαz,

which is equivalent to

0 ∈ z − 1

1− λα
y +

λ

1− λα
∂(‖z‖1), (6.2.4)

we have z = proxλ
[
RSPB
α

]
(y). It also follows from (6.2.4) that

zi = soft
(

yi
1− λα

;
λ

1− λα

)
= springback(yi;λ, α).

Hence, the assertion is proved. �

Recall that the springback penalty (6.1.4) is a weakly convex function. Its
thresholding operator defined in (6.2.3) is also in between the soft and firm thresh-
olding operators. As limµ→∞ firm(w;λ, µ) = soft(w;λ), a compromising µ could be
large enough such that |w| ≤ µ and it reaches a certain compromise between the
soft and firm thresholding operators. In this case, we have a particular springback
thresholding operator

springback(w;λ, 1/µ) =

0, |w| ≤ λ,

sgn(w)µ(|w|−λ)
µ−λ , |w| ≥ λ.

If 1/µ is replaced by a more general α > 0, then the springback thresholding operator
(6.2.3) is recovered.

6.2.4 Rationale of the name

Springback is a concept in applied mechanics (see, e.g., [215]). Figure 6.1 gives more
explanations for naming (6.1.4) springback. With λ = 0.25, Figure 6.1 displays the
thresholding operators for w ∈ [−1.5, 1.5], including the soft thresholding operator,
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the transformed `1 thresholding operator with β = 1, the firm thresholding opera-
tor with µ = 0.75, and the springback thresholding operator with α = 1/µ. The
transformed `1 thresholding operator enforces w with |w| ≤ λ(β + 1)/β to be 0, and
then its outputs approach to w as |w| increases. All the other thresholding operators
enforce w with |w| ≤ λ to be 0. For w ≥ λ, the soft thresholding operator subtracts
λ from |w| and thus causes the `1 penalty to underestimate high-amplitude compo-
nents; the firm thresholding operator’s outputs jump from 0 to µ until |w| exceeds
µ, afterwards its output is w. For the springback thresholding operator, its outputs
jump from 0 to µ until |w| exceeds µ, and afterwards its outputs still keep going
along the previous jumping trajectory.

In applied mechanics, spring is related to the process of bending some materi-
als. When the bending process is done, the residual stresses cause the material to
spring back towards its original shape, so the material must be over-bent to achieve
the proper bending angle. Note that the soft thresholding operator always underes-
timates high-amplitude components, and the components ‖x‖1 and −α

2 ‖x‖
2
2 in the

springback penalty are decoupled. If we deem the soft thresholding operator as a
process of over-bending, which stems for the component ‖x‖1, then the output of the
soft thresholding operator will be sprung back toward w, which is achieved separately
in consideration with the component −α

2 ‖x‖
2
2. Such a springback process occurs for

both λ ≤ |w| ≤ µ and |w| ≥ µ. The springback behavior is more obvious for those w
with larger absolute values, and this coincides with the behavior of the springback
penalty in Figure 6.1. That is, once |x| exceeds µ, the penalty turns around and
heads towards the x-axis. This process may also be explained as a compensation of
the loss of |w| with |w| ≤ λ.

6.3 Springback-penalized model for sparse signal recon-
struction

In this section, we focus on the reconstruction of a sparse signal using the springback-
penalized model (6.1.5). After reviewing some basic knowledge of compressed sens-
ing, we identify some conditions for exact and robust reconstruction using the springback-
penalized model (6.1.5), respectively.

6.3.1 Compressed sensing basics

In the seminal compressed sensing papers [41, 74], reconstruction conditions have
been established for the BP model (1.4.3). These conditions rely on the restricted
isometry property (RIP) of the sensing matrix A, as proposed in [44].
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Definition 6.3.1 For an index set T ⊂ {1, 2, . . . , n} and an integer s with |T | ≤ s,
the s-restricted isometry constant (RIC) of A ∈ Rm×n is the smallest δs ∈ (0, 1)

such that
(1− δs)‖x‖22 ≤ ‖ATx‖22 ≤ (1 + δs)‖x‖22

for all subsets T with |T | ≤ s and all x ∈ R|T |. The matrix A is said to satisfy the
s-restricted isometry property (RIP) with δs.

Denoting by xopt the minimizer of the BP problem (1.4.3), if A satisfies δ3s <

3(1− δ4s)− 1, then for an s-sparse x̄, one has

‖xopt − x̄‖2 ≤ Csτ, (6.3.1)

where Cs is a constant which may only depend on δ4s. We refer to [42, 43] for
more details. If the measurements are noise-free, i.e., τ = 0, then the error bound
(6.3.1) implies exact reconstruction. Exact reconstruction is guaranteed only in the
idealized situation where x̄ is s-sparse and the measurements are noise-free. If the
measurements are perturbed by some noise, then the bound (6.3.1) is usually referred
to as the robust reconstruction result with respect to the measurement noise. In more
realistic scenarios, we can only claim that x̄ is close to an s-sparse vector, and the
measurements may also be contaminated. In such cases, we can recover x̄ with an
error controlled by its distance to s-sparse vectors, and it was proved in [42] that

‖xopt − x̄‖2 ≤ C1,sτ + C2,s
‖x̄− x̄s‖1√

s
, (6.3.2)

where x̄s is the truncated vector corresponding to the s largest values of x̄ (in absolute
value), and C1,s and C2,s are two constants which may only depend on δ4s. The bound
(6.3.2) is usually referred to as the stable reconstruction results. Reconstruction
conditions for other models with different penalties are usually not as extensive
as the BP model (1.4.3). Under the framework of the RIP or some generalized
versions, reconstruction theory for the BP model (1.4.3) has been generalized to
the `p-penalized model in [54, 92]. With the unique representation property of A,
stable reconstruction results for the MCP-penalized model were derived in [235]. We
recommend the monograph [93] for a more comprehensive and detailed exhibition on
compressed sensing.

6.3.2 Reconstruction guarantee using the springback-penalized model

Still denoting by xopt the minimizer of the springback-penalized model (6.1.5), we
have the following exact and robust reconstruction results of the model (6.1.5) for
an s-sparse x̄.
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Theorem 6.3.2 (reconstruction of sparse signals) Let x̄ ∈ Rn be an unknown
s-sparse vector to be recovered. For a given sensing matrix A ∈ Rm×n, let b ∈ Rm be
a vector of measurements from b = Ax̄+ e with ‖e‖2 ≤ τ , and let δ3s and δ4s be the
3s- and 4s-RIC’s of A, respectively. Suppose A satisfies δ3s < 3(1 − δ4s) − 1 and α
satisfies

α ≤
√

1− δ4s

√
3s−

√
1 + δ3s

√
s

(
√

1− δ4s +
√

1 + δ3s)‖xopt‖2
, (6.3.3)

then the minimizer xopt of the problem (6.1.5) satisfies xopt = x̄ when τ = 0; and it
satisfies

‖xopt − x̄‖2 ≤
√

2√
D1

√
τ (6.3.4)

when τ ≥ 0, where

D1 =
α

2

√
1− δ4s +

√
1 + δ3s√

3s+
√
s

. (6.3.5)

Proof. Let xopt = x̄+v, and Λ0 be the support of x̄. It is clear that vΛ0 = xopt
Λ0
− x̄

and vΛc0
= xopt

Λc0
. On the one hand, we know that

‖xopt‖1 −
α

2
‖xopt‖22 ≤ ‖x̄‖1 −

α

2
‖x̄‖22.

On the other hand, it holds that

‖xopt‖1 −
α

2
‖xopt‖22

=‖x̄+ vΛ0‖1 + ‖vΛc0
‖1 −

α

2
‖x̄+ v‖22

≥‖x̄‖1 − ‖vΛ0‖1 + ‖vΛc0
‖1 −

α

2

(
‖x̄‖22 + 2 〈x̄, v〉+ ‖v‖22

)
.

Then, we have that

‖vΛc0
‖1 ≤ ‖vΛ0‖1 −

α

2
‖v‖22 + α‖v‖22 + α 〈x̄, v〉

= ‖vΛ0‖1 −
α

2
‖v‖22 + α

〈
xopt, v

〉
.

We continue by arranging the indices in Λc0 in order of decreasing magnitudes
(in absolute value) of vΛc0

, and then dividing Λc0 into subsets of size 3s. Set Λc0 =

Λ1
⋃

Λ2
⋃
· · ·
⋃

Λ`, i.e., Λ1 contains the indices of the 3s largest entries (in absolute
value) of vΛc0

, Λ2 contains the indices of the next 3s largest entries (in absolute
value) of vΛc0

, and so on. The cardinal number of Λ` may be less than 3s. Denoting
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Λ01 = Λ0
⋃

Λ1 and using the RIP of A, we have

‖Av‖2 ≥ ‖AΛ01vΛ01‖2 −

∥∥∥∥∥∑̀
i=2

AΛivΛi

∥∥∥∥∥
2

≥
√

1− δ4s‖vΛ01‖2 −
√

1 + δ3s

∑̀
i=2

‖vΛi‖2.

As the magnitude of every vt indexed by t ∈ Λi+1 is less than the average of magni-
tudes of vt indexed by t ∈ Λi, there holds

|vt| ≤
‖vΛi‖1

3s
,

where t ∈ Λi+1. Then, we have

‖vΛi+1‖22 ≤ 3s
‖vΛi‖21
(3s)2

=
‖vΛi‖21

3s
.

Together with ‖vΛ0‖1 ≤
√
s‖vΛ0‖2 ≤

√
s‖vΛ01‖2, we have

∑̀
i=2

‖vΛi‖2 ≤
`−1∑
i=1

‖vΛi‖1√
3s
≤ 1√

3s
‖vΛc0
‖1 ≤

1√
3s

(√
s‖vΛ01‖2 −

α

2
‖v‖22 + α

〈
xopt, v

〉)
.

Thus, it holds that

‖Av‖2 ≥
(√

1− δ4s −
√

1 + δ3s
√
s√

3s

)
‖vΛ01‖2 +

α
√

1 + δ3s

2
√

3s
‖v‖22

− α
√

1 + δ3s√
3s

〈
xopt, v

〉
.

(6.3.6)

Note that

‖v‖2 ≤ ‖vΛ01‖2 +
∑̀
i=2

‖vΛi‖2

≤
(

1 +

√
s√
3s

)
‖vΛ01‖2 −

α

2
√

3s
‖v‖22 +

α√
3s

〈
xopt, v

〉
,

and it can be written as

‖vΛ01‖2 ≥
√

3s√
3s+

√
s

(
α

2
√

3s
‖v‖22 + ‖v‖2 −

α√
3s

〈
xopt, v

〉)
.

With the assumption δ3s < 3(1− δ4s)− 1 on A, the coefficient of ‖vΛ01‖2 in (6.3.6)
is positive and thus we have
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‖A
v
‖ 2
≥
√

1
−
δ 4
s

√
3s
−
√

1
+
δ 3
s
√
s

√
3s

+
√
s

( α 2√
3
s
‖v
‖2 2

+
‖v
‖ 2
−

α √
3
s

〈 xopt
,v
〉) +

α
√

1
+
δ 3
s

2
√

3s
‖v
‖2 2
−
α
√

1
+
δ 3
s

√
3s

〈 xopt
,v
〉

=
α 2

(√ 1
−
δ 4
s

+
√

1
+
δ 3
s

√
3
s

+
√
s

) ‖v
‖2 2

+

√
1
−
δ 4
s

√
3s
−
√

1
+
δ 3
s
√
s

√
3s

+
√
s

‖v
‖ 2
−
α

(√ 1
−
δ 4
s

+
√

1
+
δ 3
s

√
3
s

+
√
s

) 〈 x
o
p

t ,
v
〉 .

(6.3.7)

If
〈
xopt, v

〉
≤ 0, then

‖Av‖2 ≥ D1‖v‖22.
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If
〈
xopt, v

〉
> 0, then the condition (6.3.3) on α guarantees

√
1− δ4s

√
3s−

√
1 + δ3s

√
s√

3s+
√
s

‖v‖2 − α
(√

1− δ4s +
√

1 + δ3s√
3s+

√
s

)〈
xopt, v

〉
≥
√

1− δ4s

√
3s−

√
1 + δ3s

√
s√

3s+
√
s

(
‖v‖2 −

〈
xopt

‖xopt‖2
, v

〉)
≥ 0,

where we use the Cauchy–Schwarz inequality. Hence we also have

‖Av‖2 ≥ D1‖v‖22.

When τ = 0, the equality

Av = A(xopt − x̄) = b− b = 0

renders
0 = ‖Av‖2 ≥ D1‖v‖22,

which implies ‖v‖2 = 0. Thus xopt = x̄. When τ > 0, the inequality

‖Av‖2 = ‖Axopt −Ax̄‖2 ≤ ‖Axopt − b‖2 + ‖Ax̄− b‖2 ≤ 2τ

leads to 2τ ≥ D1‖v‖22, which implies (6.3.4). �

In analysis of signal reconstruction models with various convex and non-convex
penalties, such as the `1 penalty [43, 54] and the `1−2 penalty [238, 239], a linear
lower bound for ‖A(xopt − x̄)‖2 is derived somehow. The proof of Theorem 6.3.2
mainly follows the idea of [43], but we derive a quadratic lower bound for the term
‖A(xopt − x̄)‖2. Thus, it is worthy noting that our results cannot be reduced to the
result of the BP model (6.1.3) as α→ 0. Indeed, the quadratic bound (6.3.6) in our
proof is reduced to a linear bound as α→ 0, which then leads to the same results as
the BP model (6.1.3). However, we handle our final quadratic bound by removing
its linear and constant terms and hence the obtained result cannot be reduced to the
result of the BP model (6.1.3) as α→ 0.

Besides, the condition (6.3.3) on α is required for the springback-penalized model
(6.1.5). It is impossible to choose an α satisfying (6.3.3) unless we have a priori
estimation on ‖xopt‖2 before solving the problem (6.1.5). Thus, the condition (6.3.3)
then can be interpreted as a posterior verification in the sense that it can be verified
once xopt is obtained by solving the problem (6.1.5).
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Remark 6.3.3 (Posterior verification) In practice, we solve the springback-penalized
model (6.1.5) numerically and thus obtain an approximate solution, denoted by x∗,
subject to a preset accuracy ε > 0. That is,

‖xopt − x∗‖2 ≤ ε.

Then, the posterior verification (6.3.3) is guaranteed if

α ≤
√

1− δ4s

√
3s−

√
1 + δ3s

√
s

(
√

1− δ4s +
√

1 + δ3s)(‖x∗‖2 + ε)
.

6.3.3 On the exact and robust reconstruction

In Theorem 6.3.2, we establish conditions for exact and robust reconstruction us-
ing the springback-penalized model (6.1.5). Table 6.1 lists the exact reconstruc-
tion conditions for five other popular models in the literature. In particular, the
springback-penalized model (6.1.5) and the `1-penalized model, i.e., the BP model
(6.1.3), have the same RIP condition. This condition is more stringent than that of
the `p-penalized model (0 < p < 1) but weaker than those of the transformed `1- and
`1−2-penalized models. Beside the RIP condition, there is an additional assumption
a(s) > 1 for the `1−2-penalized model, where a(s) was first derived in [239] and
slightly improved in [238] as

a(s) =

(
3s− 1√

3s+
√

4s− 1

)2

.

Note that a(s) < 3 was shown in [238, 239] for both the cases.

Table 6.1: Exact reconstruction conditions reconstruction models with various
penalties.

Penalty RIP condition
`1 [43] δ3s < 3(1− δ4s)− 1

`p (0 < p < 1) [54] δ3s < 3(2−p)/p(1− δ4s)− 1

transformed `1 [243] δ3s <
(

β
β+1

)2
3(1− δ4s)− 1

`1−2 [238, 239] δ3s < a(s)(1− δ4s)− 1

springback δ3s < 3(1− δ4s)− 1
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We then discuss robust reconstruction results. If α→ 0, then the result (6.3.4)
cannot provide any information as

√
2√
D1
→∞.

However, for an appropriate α, the bound (6.3.4) is informative and attractive. The
robust reconstruction results of the `1-, `p-, transformed `1- and `1−2-penalized mod-
els were shown to be linear with respect to the level of noise τ [43, 54, 238, 239, 243],
in the sense of

‖xopt − x̄‖2 ≤ Csτ, (6.3.8)

where Cs is some constant. Thus, under the conditions of Theorem 6.3.2, the bound
(6.3.4) for the springback-penalized model (6.1.5) is tighter than (6.3.8) in the sense
of √

2√
D1

√
τ ≤ Csτ (6.3.9)

if the level of noise τ satisfies
τ >

2

D1C2
s

. (6.3.10)

Assume that the reconstruction conditions listed in Table 6.1 are satisfied for each
model, respectively. Then, we can summarize their corresponding ranges of τ in Table
6.2 such that the robust reconstruction bound (6.3.4) of the springback-penalized
model (6.1.5) is tighter than all the others in the sense of (6.3.9).

These ranges on τ look complicated. To have a better idea, we consider a toy ex-
ample with s = 20, δ3s = 1/4, δ4s = 1/3, α = 1 for the spingback penalty (6.1.4), and
β = 1 for the transformed `1 penalty. Then, the springback-penalized model (6.1.5)
gives a tighter bound in the sense of (6.3.9) than the `1-, `0.2-, `0.5-, `0.999-, trans-
formed `1-, and `1−2-penalized models if τ > 0.1385, 0.0271, 0.2333, 0.1391, 0.0807,
and 2.8652× 10−4, respectively.

Can we further improve the robust reconstruction result (6.3.4) in Theorem
6.3.2? The following proposition suggests a potential improvement. Moreover, with-
out any requirement on α, this proposition also means, even if the posterior verifica-
tion (6.3.3) is violated sometimes, the springback-penalized model (6.1.5) may still
give a good reconstruction. Note that this proposition is only of conceptual sense,
because its assumption 〈

xopt, xopt − x̄
〉
≤ 0

is not verifiable. Nevertheless, it helps us discern a possibility of achieving a better
reconstruction bound than (6.3.4).
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Proposition 6.3.4 Let x̄ ∈ Rn be an unknown s-sparse vector to be recovered. For
a given sensing matrix A ∈ Rm×n, let b ∈ Rm be a vector of measurements from b =

Ax̄+ e with ‖e‖2 ≤ τ , and let δ3s and δ4s be the 3s- and 4s-RIC’s of A, respectively.
Let xopt be the minimizer of the problem (6.1.5) and assume

〈
xopt, xopt − x̄

〉
≤ 0.

Suppose A satisfies δ3s < 3(1− δ4s)− 1, then xopt = x̄ when τ = 0; and xopt satisfies

‖xopt − x̄‖2 ≤

√
D2

2

4D2
1

+
2

D1
τ − D2

2D1
(6.3.11)

when τ ≥ 0, where D1 is the constant (6.3.5) given in Theorem 6.3.2 and

D2 =

√
3
√

1− δ4s −
√

1 + δ3s√
3 + 1

. (6.3.12)

Proof. In the case of
〈
xopt, v

〉
≤ 0, it follows straightforwardly from (6.3.7) that

‖Av‖2 ≥
α

2

(√
1− δ4s +

√
1 + δ3s√

3s+
√
s

)
‖v‖22 +

√
1− δ4s

√
3s−

√
1 + δ3s

√
s√

3s+
√
s

‖v‖2

:= D1‖v‖22 +D2‖v‖2.

The assumption δ3s < 3(1 − δ4s) − 1 guarantees D2 > 0. Hence, when τ = 0, as
Av = A(xopt − x̄) = 0, we have

0 = ‖Av‖2 ≥ D1‖v‖22 +D2‖v‖2,

which implies ‖v‖2 = 0. When τ > 0, the inequality

‖Av‖2 = ‖Axopt −Ax̄‖2 ≤ ‖Axopt − b‖2 + ‖Ax̄− b‖2 ≤ 2τ

implies

‖v‖2 ≤
√
D2

2 + 8D1τ −D2

2D1
.

The assertion is proved. �

Remark 6.3.5 The robust reconstruction result (6.3.11) is always better than (6.3.4)
in Theorem 6.3.2 due to the subadditivity of the square root function. Under the
conditions of Proposition 6.3.4, the bound (6.3.11) for the springback-penalized model
(6.1.5) is tighter than (6.3.8) in the sense of√

D2
2

4D2
1

+
2

D1
τ − D2

2D1
< Csτ,
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if the level of noise τ satisfies

τ >
2−D2Cs
D1C2

s

=

(
1− D2Cs

2

)
2

D1C2
s

.

Comparing with (6.3.10), this improvement enlarges the value range of τ . For ex-
ample, if Cs is the coefficient in the result (6.3.1) of the BP model (6.1.3) , then
1−D2Cs/2 is approximately 0.2679.

6.4 Springback-penalized model for nearly sparse signal
reconstruction

We then study the stable reconstruction of the springback-penalized model (6.1.5)
when x̄ is nearly sparse and the measurements are noisy.

6.4.1 Reconstruction guarantee using the springback-penalized model

If the signal x̄ to be recovered is nearly s-sparse, then we have the following stable
reconstruction theorem for the springback-penalized model (6.1.5).

Theorem 6.4.1 (reconstruction of nearly sparse signals) Let x̄ ∈ Rn be an
unknown vector to be recovered. For a given sensing matrix A ∈ Rm×n, let b ∈ Rm

be a vector of measurements from b = Ax̄ + e with ‖e‖2 ≤ τ , and let δ3s and δ4s

be the 3s- and 4s-RIC’s of A, respectively. Let x̄s ∈ Rn be the truncated vector
corresponding to the s largest values of x̄ (in absolute value). Suppose A satisfies
δ3s < 3(1 − δ4s) − 1 and α satisfies (6.3.3), then the minimizer xopt of the problem
(6.1.5) satisfies

‖xopt − x̄‖2 ≤
√

2

D1
τ +

4

α
‖x̄− x̄s‖1, (6.4.1)

where D1 is the constant (6.3.5) given in Theorem 6.3.2.

Proof. Let xopt = x̄+v, and Λ0 be the support of x̄s. It is clear that vΛ0 = xopt
Λ0
−x̄s

and vΛc0
= xopt

Λc0
− x̄Λc0

. We know that

‖xopt‖1 −
α

2
‖xopt‖22 ≤ ‖x̄‖1 −

α

2
‖x̄‖22 = ‖x̄s‖1 + ‖x̄Λc0

‖1 −
α

2
‖x̄‖22.

On the other hand, it holds that

‖xopt‖1 −
α

2
‖xopt‖22

=‖x̄s + vΛ0‖1 + ‖x̄Λc0
+ vΛc0

‖1 −
α

2
‖x̄+ v‖22

≥‖x̄s‖1 − ‖vΛ0‖1 + ‖vΛc0
‖1 − ‖x̄Λc0

‖1 −
α

2

(
‖x̄‖22 + 2 〈x̄, v〉+ ‖v‖22

)
.
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Then, v satisfies the following estimation:

‖vΛc0
‖1 ≤‖vΛ0‖1 + 2‖x̄− x̄s‖1 −

α

2
‖v‖22 + α‖v‖22 + α 〈x̄, v〉

=‖vΛ0‖1 + 2‖x̄− x̄s‖1 −
α

2
‖v‖22 + α

〈
xopt, v

〉
.

We divide Λc0 into subsets of size 3s, Λc0 = Λ1
⋃

Λ2
⋃
· · ·
⋃

Λ`, in terms of
decreasing order of magnitudes (in absolute value) of vΛc0

. Denoting Λ01 = Λ0
⋃

Λ1

and using the RIP of A, we have

‖Av‖2 ≥ ‖AΛ01vΛ01‖2 −

∥∥∥∥∥∑̀
i=2

AΛivΛi

∥∥∥∥∥
2

≥
√

1− δ4s‖vΛ01‖2 −
√

1 + δ3s

∑̀
i=2

‖vΛi‖2.

As proved for Theorem 6.3.2, we have

∑̀
i=2

‖vΛi‖2 ≤
‖vΛc0
‖1√

3

and ‖vΛ0‖1 ≤
√
s‖vΛ01‖2. Thus, we obtain

∑̀
i=2

‖vΛi‖2 ≤
1√
3s

(√
s‖vΛ01‖2 + 2‖x̄− x̄s‖1 −

α

2
‖v‖22 + α

〈
xopt, v

〉)
.

Furthermore, it holds that

‖Av‖2 ≥
(√

1− δ4s −
√

1 + δ3s
√
s√

3s

)
‖vΛ01‖2 −

2
√

1 + δ3s√
3s

‖x̄− x̄s‖1

+
α
√

1 + δ3s

2
√

3s
‖v‖22 −

α
√

1 + δ3s√
3s

〈
xopt, v

〉
.

(6.4.2)

As

‖v‖2 ≤ ‖vΛ01‖2 +
∑̀
i=2

‖vΛi‖2

≤
(

1 +

√
s√
3s

)
‖vΛ01‖2 +

2√
3s
‖x̄− x̄s‖1 −

α

2
√

3s
‖v‖22 +

α√
3s

〈
xopt, v

〉
,

we have

‖vΛ01‖2 ≥
√

3s√
3s+

√
s

(
α

2
√

3s
‖v‖22 + ‖v‖2 −

α√
3s

〈
xopt, v

〉
− 2√

3s
‖x̄− x̄s‖1

)
.

Recall the assumption δ3s < 3(1 − δ4s) − 1. The coefficient of ‖vΛ01‖2 in (6.4.2) is
positive, and it follows that
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‖A
v
‖ 2
≥
√

1
−
δ 4
s

√
3s
−
√

1
+
δ 3
s
√
s

√
3s

+
√
s

( α‖
v
‖2 2

2√
3
s

+
‖v
‖ 2
−

α √
3
s

〈 xopt
,v
〉 −

2 √
3s
‖x̄
−
x̄
s
‖ 1
) +

α
√

1
+
δ 3
s

2
√

3s
‖v
‖2 2

−
α
√

1
+
δ 3
s

√
3
s

〈 xopt
,v
〉 −2

√
1

+
δ 3
s

√
3s

‖x̄
−
x̄
s
‖ 1

=
α 2

(√ 1
−
δ 4
s

+
√

1
+
δ 3
s

√
3
s

+
√
s

) ‖v
‖2 2

+

√
1
−
δ 4
s

√
3s
−
√

1
+
δ 3
s
√
s

√
3s

+
√
s

‖v
‖ 2
−
α

(√ 1
−
δ 4
s

+
√

1
+
δ 3
s

√
3
s

+
√
s

) 〈 x
o
p

t ,
v
〉
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(6.4.3)

If
〈
xopt, v

〉
≤ 0, then

‖Av‖2 ≥ D1‖v‖22 −
4

α
D1‖x̄− x̄s‖1.
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If
〈
xopt, v

〉
> 0, then the condition (6.3.3) on α guarantees

√
1− δ4s

√
3s−

√
1 + δ3s

√
s√

3s+
√
s

‖v‖2 − α
(√

1− δ4s +
√

1 + δ3s√
3s+

√
s

)〈
xopt, v

〉
≥ 0,

which is shown in the proof of Theorem 6.3.2. Hence, we also have

‖Av‖2 ≥ D1‖v‖22 −
4

α
D1‖x̄− x̄s‖1.

As
‖Av‖2 = ‖Axopt −Ax̄‖2 ≤ ‖Axopt − b‖2 + ‖Ax̄− b‖2 ≤ 2τ,

we have
2τ ≥ D1‖v‖22 −

4

α
D1‖x̄− x̄s‖1,

which implies (6.4.1). �

Similar to the improvement in Proposition 6.3.4, the above stable reconstruction
result can be improved as follows.

Proposition 6.4.2 Let x̄ ∈ Rn be an unknown vector to be recovered. For a given
sensing matrix A ∈ Rm×n, let b ∈ Rm be a vector of measurements from b = Ax̄+ e

with ‖e‖2 ≤ τ , and let δ3s and δ4s be the 3s- and 4s-RIC’s of A, respectively. Let
xopt be the minimizer of the problem (6.1.5) and assume

〈
xopt, xopt − x̄

〉
≤ 0. Let

x̄s ∈ Rn be the truncated vector corresponding to the s largest values of x̄ (in absolute
value). Suppose A satisfies δ3s < 3(1− δ4s)− 1, then xopt satisfies

‖xopt − x̄‖2 ≤

√
D2

2

4D2
1

+
2

D1
τ +

4

α
‖x̄− x̄s‖1 −

D2

2D1
,

where D1 and D2 are the constants (6.3.5) and (6.3.12) given in Theorem 6.3.2 and
Proposition 6.3.4, respectively.

Proof. In the case of
〈
xopt, v

〉
≤ 0, it follows straightforwardly from the estimation

(6.4.3) that

‖Av‖2 ≥ D1‖v‖22 +D2‖v‖2 −
4

α
D1‖x̄− x̄s‖1.

The assumption δ3s < 3(1 − δ4s) − 1 guarantees D2 > 0. Therefore, it follows from
the triangle inequality that

‖Av‖2 = ‖Axopt −Ax̄‖2 ≤ ‖Axopt − b‖2 + ‖Ax̄− b‖2 ≤ 2τ.
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We thus have
D1‖v‖22 +D2‖v‖2 −

4

α
D1‖x̄− x̄s‖1 ≤ 2τ, (6.4.4)

which gives the improved result by solving the system of inequalities (6.4.4) and
‖v‖2 ≥ 0. �

6.4.2 On the stable reconstruction

If x̄ is known to be s-sparse, then the estimation (6.4.1) in Theorem 6.4.1 is reduced
to (6.3.4) in Theorem 6.3.2; and if the measurements are additionally noise-free, then
both the estimations (6.3.4) and (6.4.1) imply exact reconstruction of the signal x̄.
We compare the estimation (6.4.1) with the estimation (6.3.2) for the BP model
(6.1.3). The following comparison is based on theoretical error bounds. We are
interested in the case where the estimation (6.4.1) is tighter than the estimation
(6.3.2) in the sense of√

2

D1
τ +

4

α
‖x̄− x̄s‖1 ≤ C1,sτ + C2,s

‖x̄− x̄s‖1√
s

, (6.4.5)

which is equivalent to

s1/4

√
α

√
4(
√

3 + 1)√
1− δ4s +

√
1 + δ3s

τ +
4‖x̄− x̄s‖1√

s
≤ C1,sτ + C2,s

‖x̄− x̄s‖1√
s

. (6.4.6)

Note that s takes values among {1, 2, . . . , n} and the right-hand side of (6.4.6) de-
creases as s increases. If the left-hand side of (6.4.6) is smaller than the right-hand
side of (6.4.6) for s = 1 and the left-hand side is larger than the right-hand side for
s = n, then there must exist a constant C such that the inequality (6.4.5) holds for
s ≤ C. Besides, if x̄ is known to be s-sparse, then ‖x̄ − x̄s‖1 = 0 and thus (6.4.6)
implies the existence of C without any assumption. Therefore, we have the following
corollary.

Corollary 6.4.3 If x̄ is s-sparse, then there exists a constant C such that the in-
equality (6.4.5) holds for s ≤ C, where

C = α2C4
1,sτ

2

(√
1− δ4s +

√
1 + δ3s

4(
√

3 + 1)

)2

. (6.4.7)

When no information of the sparsity of x̄ is known, if α satisfies

4(
√

3+1)√
1−δ4+

√
1+δ3

τ + 4‖x̄− x̄1‖1
(C1,1τ + C2,1‖x̄− x̄1‖1)2

≤ α ≤ 1

C2
1,nτ

4(
√

3 + 1)
√
n√

1− δ4n +
√

1 + δ3n
,
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then there exists a constant C such that the inequality (6.4.5) holds for s ≤ C, where
C depends on α, x̄, τ , δ3s, and δ4s.

In virtue of random matrix theory, we give two examples to show that the
condition δ3s < 3(1− δ4s)− 1 on A in Theorems 6.3.2 and 6.4.1 holds.

• Random Gaussian matrices: the entries of A are i.i.d. Gaussian with mean zero
and variance 1/m. It was shown in [43, 44] that the condition δ3s < 3(1−δ4s)−1

holds with overwhelming probability when s ≤ C ′m/ log(n/m), where C ′ is a
constant. Similar results were extended to sub-gaussian matrices in [145].

• Fourier ensemble: A is obtained by selecting m rows from the n × n discrete
Fourier transform and renormalizing the columns so that they are unit-normed.
If the rows are selected at random, the condition δ3s < 3(1 − δ4s) − 1 holds
with overwhelming probability for s ≤ C ′m/(log(n))4, where C ′ is a constant.
This was initially considered in [45] and then improved in [181].

Remark 6.4.4 Assume that α satisfies the conditions in Theorem 6.4.1 and Corol-
lary 6.4.3. For a random Gaussian sensing matrix A, if

s ≤ C ′m/ log(n/m),

then the RIP condition δ3s < 3(1 − δ4s) − 1 on A holds with high probability; and
additionally if C ′m/ log(n/m) ≤ C, i.e.,

m exp

(
C ′

C
m

)
≤ n,

then the estimation (6.4.1) is tighter than the estimation (6.3.2) in the sense of
(6.4.5). For a randomly subsampled Fourier sensing matrix A, if

s ≤ C ′m/(log(n))4,

then the RIP condition on A holds with overwhelming probability; and additionally
if C ′m/(log(n))4 ≤ C, i.e.,

m ≤ C

C ′
(log(n))4,

then the estimation (6.4.1) is tighter than the estimation (6.3.2) in the sense of
(6.4.5). In a nutshell, for a sensing matrix satisfying the RIP condition, if the num-
ber m of observation data is limited, where “limited” can be characterized as the fact
that m is less than some constant depending on n, C, and C ′, then the stable re-
construction using the springback-penalized model (6.1.5) is guaranteed by a tighter
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bound than that of BP model (6.1.3) in the sense of (6.4.5). These results can be ex-
tended to general orthogonal sensing matrices [45]. Similar comparative results with
other reconstruction models may also be derived if the reconstruction error bounds of
these models are linear to τ and ‖x̄− x̄s‖1, e.g., the `1−2-penalized model [238].

6.5 Computational aspects of the springback-penalized
model

Now we focus on computational aspects for the springback-penalized model (6.1.5).
We first design an algorithm for solving (6.1.5) in Section 6.5.1, and then discuss
its convergence in Section 6.5.2 and elaborate on how to solve its subproblems in
Section 6.5.3.

6.5.1 DCA-springback: An algorithm for the springback penalized
model

Some well-developed algorithms for solving difference-of-convex (DC) optimization
problems can be easily implemented to solve the springback-penalized model (6.1.5).
We focus on the simplest DCA in [212, 213] without any line-search step, which
has been shown to be efficient for solving signal reconstruction problems, see, e.g.,
[116, 239, 243].

Recall a standard DC optimization problem

min
x∈Rn

f(x) := g(x)− h(x), (6.5.1)

where g and h are lower semicontinuous proper convex functions on Rn. Here, f is
called a DC function, and g − h is a DC decomposition of f . At each iteration, the
DCA replaces the concave part −h with a linear majorant and solves the resulting
convex problem. That is, the DCA generates a sequence {xk} by solving the following
subproblem iteratively:

xk+1 ∈ arg min
x∈Rn

{
g(x)− 〈x− xk, ξk〉

}
,

where ξk ∈ ∂(h(xk)). Note that the springback-penalized model (6.1.5) can be
written as

arg min
x∈Rn

F (x) := (‖x‖1 + χΩ(x))− α

2
‖x‖22, (6.5.2)
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where Ω := {x ∈ Rn : ‖Ax− b‖2 ≤ τ} and

χΩ(x) :=

0, x ∈ Ω,

+∞, x 6∈ Ω,

is the indictor function of the set Ω. Thus, the DCA iterate scheme for solving (6.5.2)
reads as

xk+1 ∈ arg min
x

{
(‖x‖1 + χΩ(x))− 〈x− xk, ξk〉

}
= arg min

x

{
‖x‖1 − 〈x− xk, ξk〉 s.t. x ∈ Ω

}
.

More specifically, the resulting DCA is listed in the following algorithm, where
εouter > 0 is the preset tolerance for iterations, and “MaxIt” means the maximal
number of iterations set beforehand.

Algorithm 1: DCA-springback: Solving the constrained springback model
(6.1.5) via DCA
Input: Model parameters: α > 0 satisfying the condition (6.5.6);
Stopping criterion: εouter > 0, MaxIt > 0;
Initialization: k = 0, x0 satisfying ‖Ax− b‖2 ≤ τ ;

1 while k < MaxIt and min
{
‖xk+1 − xk‖2, ‖xk+1 − xk‖2/‖xk‖2

}
> εouter do

2 ξk = αxk;
3 xk+1 ∈ arg min

x

{
‖x‖1 −

〈
x− xk, ξk

〉
s.t. ‖Ax− b‖2 ≤ τ

}
;

4 k ← k + 1;
5 end

6.5.2 Convergence

Recall that the modulus of strong convexity of a convex function f on Rn, denoted
by d(f), is defined as

d(f) := sup{ν > 0 : f(·)− ν

2
‖ · ‖22 is convex on Rn}.

Then, according to [213, Proposition A.1], for a general DC function f = g− h, any
sequence {xk} generated by the DCA satisfies

f(xk)− f(xk+1) ≥ d(g) + d(h)

2
‖xk+1 − xk‖22, (6.5.3)

which immediately implies the decreasing property of {f(xk)} if at least one of g and
h is strongly convex. Note that α

2 ‖x‖
2
2 is strongly convex with modulus α. Thus,
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starting with a feasible x0, we have the decreasing property

F (xk)− F (xk+1) ≥ α

2
‖xk+1 − xk‖22, (6.5.4)

where F is defined as (6.5.2). However, the decreasing property (6.5.4) of F is not
sufficient to ensure the convergence of DCA-springback. The function F could be
negative if α is inappropriately large. Note that for any xk, we have

‖Axk‖2 − ‖b‖2 ≤ ‖Axk − b‖2 ≤ τ.

Moreover, as A is assumed to be full rank, we have σmin(A) > 0. It follows from the
geometric interpretation of the SVD [223, Lecture 4] that

‖Ax‖2 ≥ σmin(A)

for any x ∈ Rn on the unit sphere {x ∈ Rn : ‖x‖2 = 1}. Thus, it holds that

0 < σmin(A) ≤ min
x∈Rn

‖Ax‖2
‖x‖2

= min
‖x‖2=1

‖Ax‖2,

and we have
‖xk‖2 ≤

‖b‖2 + τ

σmin(A)
. (6.5.5)

Note that ‖x‖1 − α
2 ‖x‖

2
2 ≥ 0 and hence F is non-negative if ‖x‖2 ≤ 2/α. Clearly, if

α ≤ 2σmin(A)

‖b‖2 + τ
, (6.5.6)

then F (xk) ≥ 0 for any k ≥ 0 because all iterates xk satisfy (6.5.5). Together with
the decreasing property (6.5.4), we can establish the convergence of DCA-springback
easily by following the analytical framework in [212, 213]. Moreover, it follows the
convergence of {F (xk)} and (6.5.4) that ‖xk+1 − xk‖2 → 0 as k →∞.

Remark 6.5.1 Note that the condition (6.3.3) depends on the RIP condition of A,
and (6.5.6) depends on the conditioning of A. It is easy to deduce that if

√
1− δ4s

√
3s−

√
1 + δ3s

√
s√

1− δ4s +
√

1 + δ3s
≤ 2σmin(A)‖xopt‖2

‖b‖2 + τ
, (6.5.7)

then the condition (6.5.6) is implied by (6.3.3). Otherwise, it can be verified that the
condition (6.3.3) is implied by (6.5.6).
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6.5.3 Solving the subproblem of DCA-springback

For the proposed DCA-springback, its subproblem at each iteration is

min
x
‖x‖1 −

〈
x− xk, ξk

〉
s.t. ‖Ax− b‖2 ≤ τ. (6.5.8)

This problem can be easily solved by, e.g., the ADMM, which was originally proposed
in [99] and had been well developed in the literature such as [56, 107]. Some details
are given for completeness. Note that the subproblem (6.5.8) can be reformulated as

min
x,y,z

‖y‖1 − 〈x− xk, ξk〉

s.t. y = x,

z = Ax− b,

z ∈ B(τ),

where y, z ∈ Rn are two auxiliary variables. With some trivial details skipped, the
iterative scheme of the (scaled) ADMM for the subproblem (6.5.8) reads as

xj+1 = (ρATA+ ζI)−1
(
ρAT(b+ zj − ηj) + ξk + ζ(yj − uj)

)
,

yj+1
i = soft(xj+1

i + uji ; 1/ζ) for i = 1, . . . , n,

zj+1 = PB(τ)(Ax
j+1 − b+ ηj),

uj+1 = uj + xj+1 − yj+1,

ηj+1 = ηj+1 +Axj+1 − b− zj+1,

(6.5.9)

where u ∈ Rn and η ∈ Rm are the Lagrange multipliers, ζ > 0 and ρ > 0 are
penalty parameters, and PB(τ)(·) is the projection operator onto the ball B(τ). If
the measurement process is noise-free, i.e., τ = 0, then zj is always set as zero and
the projection of the z-subproblem in (6.5.9) is not necessary.

6.6 Numerical experiments

In this section, we implement the DCA-springback to the constrained springback-
penalized model (6.1.5) with simulated data. All codes were written by MATLAB
R2022a, and all numerical experiments were conducted on a laptop (16 GB RAM,
Intel® CoreTM i7-9750H Processor) with macOS Monterey 12.4.

We mainly show the effectiveness of the model (6.1.5) for some specific scenarios
and demonstrate the efficiency of the DCA-springback. Several state-of-the-art signal
reconstruction solvers listed below are also tested for comparison.
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1) The accelerated iterative hard thresholding (AIHT) algorithm in [26]: solving
the constrained model

min
x∈Rn

‖Ax− b‖22 s.t. ‖x‖0 ≤ s

by the accelerated iterative hard thresholding, where s is set beforehand to
estimate the sparsity of x. For simplicity, we only choose the fundamental
AIHT in [26], and refer to, e.g., [91, 115, 119, 120, 155, 161], for various other
more sophisticated algorithms.

2) ADMM-`1 [99]: solving the unconstrained `1-penalized problem by the ADMM.

3) IRLS-`p (0 < p < 1) [125]: smoothing the unconstrained `p-penalized model as

min
x∈Rn

1

2
‖Ax− b‖22 + λ‖x‖pp,ε with ‖x‖pp,ε :=

n∑
j=1

(x2
j + ε2)p/2,

where ε > 0, and implementing the iteratively reweighted least squares (IRLS)
algorithm.

4) DCA-TL1 [243]: solving the unconstrained transformed `1-penalized model
with parameter β by DCA and implementing the ADMM for its subproblems.

5) DCA-`1−2 [239]: solving the unconstrained `1−2-penalized model by DCA and
implementing the ADMM for its subproblems.

6) DCA-MCP [209]: solving the unconstrained MCP-penalized model by DCA
and implementing the ADMM for its subproblems (the authors in [209] consider
the `1-norm data fidelity term instead of the `2 norm, but the implementation
of the MCP term is similar).

Note that the AIHT solves the `0-penalized model directly; the ADMM-`1 solves
a convex surrogate model, and the others solve different non-convex approximate
models.

6.6.1 Setup

We consider both incoherent and coherent sensing matrices to generate synthetic
data for simulation. In the incoherent regime, we use random Gaussian matrices and
random partial discrete cosine transform (DCT) matrices. For the former kind, its
columns are generated by

Ai
i.i.d.∼ N (0, Im/m), i = 1, . . . , n,
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where N (0, Im/m) is the multivariate Gaussian distribution with location 0 and
covariance Im/m. For the latter kind, its columns are generated by

Ai =
1√
m

cos(2iπχi), i = 1, . . . , n,

where χi ∈ Rm i.i.d.∼ U([0, 1]m) is uniformly and independently sampled from [0, 1].
Note that both kinds of matrices have small RIP constants with high probability.
The coherent regime consists of more ill-conditioned sensing matrices with higher
coherence, and it is represented by the randomly oversampled partial DCT matrix
in our experiments. A randomly oversampled partial DCT matrix is defined as

Ai =
1√
m

cos(2iχi/F), i = 1, . . . , n,

where F ∈ N is the refinement factor. As F increases, A becomes more coherent.
A matrix sampled in this way cannot satisfy an RIP, and the sparse reconstruction
with such a matrix is possible only if the non-zero elements of the ground-truth x̄

are sufficiently separated. Technically, we select the elements of supp(x̄) such that

min
j,k∈supp(x̄)

|j − k| ≥ L,

where L is characterized as the minimum separation.

We generate a ground-truth vector x̄ ∈ Rn with sparsity s supported on a
random index set (for incoherent matrices) or an index set satisfying the required
minimum separation (for coherent matrices) with non-zero entries i.i.d. drawn from
the normal distribution. We then compute b = Ax̄ as the measurements, and apply
each solver to produce a reconstruction vector x∗ of x̄. A reconstruction is considered
successful if the relative error satisfies

‖x∗ − x̄‖2
‖x̄‖2

< 10−3.

We test some cases with different sparsity s of x̄, different levels of noise, or different
numbers of measurements. We run 100 times independently for each scenario and
report the success rate, which is the ratio of the number of successful trials over 100.
All experiments are run in parallel with the MATLAB Parallel Computing Toolbox.

The initial guess for all tested algorithms is x0 = 0. The choice of the parameter
α in the springback penalty is discussed in Section 6.6.2. For outer iterates of the
DCA-springback, we set ρ = 105, MaxIt = 10, and εouter = 10−5 (for noise-free
measurements) or 10−3 (for noisy measurements). To implement the ADMM (6.5.9)
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for subproblems, we set ζ = 10−5, τ = ‖Ax̄−b‖2, and the stopping criterion as either

‖xj+1 − xj‖2
max{‖xj+1‖2, ‖xj‖2}

< 10−5

or the iteration number exceeds 500. The DCA-TL1, the DCA-`1−2, and the DCA-
MCP are solved by DCA and their subproblems are also solved by the ADMM. We
thus set the regularization parameter λ = 10−6 and adopt the same parameters of
the rest and stopping criterion as the DCA-springback. In particular, the parameter
β in the transformed `1 penalty is set as 1 for the DCA-TL1, following [243], and the
parameter µ in the MCP is set as 1/α for the DCA-MCP. For the AIHT, we set all
parameters as [26]. For the ADMM-`1, we set λ = 10−6, ζ = 10−5, εouter = 10−5 (for
noise-free measurements) and 10−3 (for noisy measurements), and MaxIt = 5000.
For IRLS-`p, we set p = 0.5, λ = 10−6, εouter = 10−8, and MaxIt = 1000.

6.6.2 A subroutine for choosing the model parameter

Let us focus on the parameter α of the springback penalty (6.1.4). For an 128× 512

random Gaussian matrix, we test the DCA-springback with different α varying
among {0.2, 0.4, 0.6, 0.8, 1}, and different levels of sparsity s among {25, 27, . . . , 65}.
The DCA-springback with α = 0.6 or 0.8, indicated by success rates in Figure 6.2,
has the best performance. For small α such as 0.2 and 0.4, the DCA-springback is not
satisfactory because the springback penalty performs similarly to the `1 penalty. For
α = 1, its performance is also inferior since the convergence condition of the DCA-
springback or the posterior verification (6.3.3) can be easily violated with a large
α. We refer to the latter reason as the “violating behavior” of the DCA-springback.
An “unsuccessful” trial is recognized due to unsatisfactory (but reasonable) recon-
struction or violating behavior. Thus, success rates cannot fully reflect “violating
behavior,” and we also plot the relative errors in Figure 6.2. Indeed, the “violating
behavior” often occurs when s becomes large. Performance of α = 0.8 and 1 is gen-
erally inferior, and also there are few such cases when α = 0.6. Thus, we adopt a
safeguard for α = 0.7, a compromise between 0.6 and 0.8. If α = 0.7 violates the
condition (6.5.6), then we replace 0.7 with the largest constant complying with this
condition (6.5.6). That is, we choose

α = min {0.7, 2σmin(A)/(‖b‖2 + τ)} .

Success rates and relative errors with safeguarded α = 0.7 are also displayed in
Figure 6.2, indicating that there is no violating behavior.

Though a reasonable upper bound of α is needed, behaviors for α = 0.2 and
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Figure 6.2: Success rates and relative errors in a natural logarithmic scale of recon-
struction using DCA-springback under 128× 512 random Gaussian sensing matrix,
with various α.

0.4 suggest that a lower bound for α should be taken to maintain the satisfactory
performance of the DCA-springback in terms of success rates. Especially if A is
ill-conditioned in the sense that its singular values lie within a wide range of values,
i.e., σmin(A) could be very small, then the condition on α could be pretty stringent.
To maintain the success rates of the DCA-springback, we adopt an efficiency

detection step as follows. If the condition number

cond(A) :=
σmax(A)

σmin(A)

is greater than 5 (or other values set by the user), then we start an efficiency

detection to enforce α to be greater than an efficiency detection factor ω. Thus,
we suggest choosing α as the following subroutine:

α =

min
{

0.7, 2σmin(A)
‖b‖2+τ

}
, if cond(A) ≤ 5,

max
{
ω,min{0.7, 2σmin(A)

‖b‖2+τ }
}
, otherwise.

(6.6.1)

In short, the safeguard step suffices to guarantee convergence of the DCA-springback;
and the efficiency detection step is adopted to maintain the success rates of the
DCA-springback for ill-conditioned sensing matrices.

6.6.3 Exact reconstruction of sparse vectors

We first compare the DCA-springback with some state-of-the-art solvers mentioned
above for noise-free measurements. We consider both the incoherent and coherent
sensing matrices, respectively.

Tests on incoherent matrices. We first consider a ground-truth vector and
display its reconstructions by the ADMM-`1, the DCA-TL1, the DCA-`1−2, the



Chapter 6. The springback model for signal reconstruction 155

DCA-MCP, and the DCA-springback. Let the sensing matrix A ∈ Rm×n be a ran-
dom Gaussian matrix with (m,n) = (64, 250), and the ground-truth x̄ ∈ R250 be
a 22-sparse vector with nonzero entries drawn from the standard normal distribu-
tion and set the efficiency detection factor as ω = 0.5. The ground-truth and its
reconstructions are displayed in Figure 6.3. We see that the DCA-springback, the
DCA-MCP, and the DCA-TL1 produce better reconstructions than the ADMM-`1
and the DCA-`1−2.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 50 100 150 200 250
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 50 100 150 200 250
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

50 100 150 200 250

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 50 100 150 200 250
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 50 100 150 200 250
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 50 100 150 200 250

Figure 6.3: A ground-truth and its reconstructions using random Gaussian sensing
matrices and noise-free measurements.

We then conduct a more comprehensive study and involve more solvers. We
choose the sensing matrix A ∈ Rm×n as a random Gaussian matrix and random
partial DCT matrices with (m,n) = (64, 160), (64, 320), and (64, 640), and set
the efficiency detection factor as ω = 0.5. Different levels of sparsity s varying
among {6, 8, 10, . . . , 40} are tested. The success rates of each solver are plotted in
Figure 6.4. For both the Gaussian and partial DCT matrices, the IRLS-`p with
p = 0.5 has the best performance, followed by the DCA-TL1, the DCA-MCP, and
the DCA-springback. In particular, the performances of the DCA-MCP and the
DCA-springback are very close because we let the parameter µ in the MCP be 1/α.
The DCA-`1−2 performs moderately well, outperforming both the ADMM-`1 and the
AIHT. Our numerical results are consistent with some observations in the literature
(e.g., [239, 243]).

Tests on coherent matrices. Now, we choose the sensing matrix A ∈
R100×1500 as a randomly oversampled partial DCT matrix with various refinement
factors F = 4, 6, 8, 10, 12, 16 and minimum separation L = 2F , with the sparsity
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s varying among {5, 7, 9, . . . , 35}. The efficiency detection factor is set as ω = 0.5.
The success rates of each solver are plotted in Figure 6.5. This figure suggests that
the DCA-TL1, the DCA-MCP, and the DCA-springback are robust regardless of the
varying coherence of sensing matrix A. Moreover, when the coherent of A is modest,
e.g. F = 6, 8, the DCA-MCP and the DCA-springback perform better than others.
In the coherent regime, the DCA-springback is comparable with the DCA-`1−2, and
it outperforms the DCA-TL1, the ADMM-`1, the IRLS-`p, and the AIHT. However,
the best-performance solver IRLS-`p in the incoherent regime becomes inefficient as
A becomes coherent.

6.6.4 Robust reconstruction in the presence of noise

We then consider noisy measurements. The noisy measurements b are obtained by b

= awgn(Ax̄,snr), a subroutine of the MATLAB Communication Toolbox, where snr
corresponds to the value of signal-to-noise ratio (SNR) measured in dB. The larger
the value of SNR is, the lighter the noise is added on.

We first consider a ground-truth vector with noisy measurements and display
its reconstructions by the ADMM-`1, the DCA-TL1, the DCA-`1−2, the DCA-MCP,
and the DCA-springback. Let the sensing matrix A ∈ Rm×n be a random Gaussian
matrix with (m,n) = (64, 250), and the ground-truth x̄ ∈ R250 be a 20-sparse vector
with nonzero entries drawn from the standard normal distribution and set the effi-
ciency detection factor as ω = 0.4. The measurement vector b = Ax̄ is contaminated
by 30 dB noise. The ground-truth and its reconstructions are displayed in Figure 6.6.
In particular, we see that the DCA-springback works better on small perturbations
than the other solvers.

We test both the random Gaussian matrix and the randomly oversampled par-
tial DCT matrix with different levels of noise in dB. For Gaussian measurements,
we choose n = 64, m = 128, and s = 25. For the oversampled partial DCT mea-
surements, we test n = 1500, m = 128, s = 30, and F = 8. We run 100 times for
each scenario and record the average errors. The efficiency detection factor is set as
ω = 0.4.

Once we adopt the efficiency detection step, a single “violating behavior”
could lift the mean error to a pretty large level. To overcome this computational
myopia, we only reserve the accepted results, where a result of the DCA-springback
is considered “accepted” if the absolute error ‖x∗ − x̄‖2 is ten times less than the
absolute error of the ADMM-`1. In addition to errors displayed in Figure 6.7, we
report the acceptance rates of the DCA-springback, which are ratios of the number
of accepted trials over 100.
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Figure 6.4: Success rates using random Gaussian and partial DCT sensing matrices.
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Figure 6.5: Success rates using randomly oversampled partial DCT matrices in
R100×1500.
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Figure 6.6: A ground-truth and its reconstructions using random Gaussian sensing
matrices and noisy measurements.
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Figure 6.7: Robust reconstruction results with randomly Gaussian and oversampled
partial DCT measurements.
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According to our experiments, we observe no “violating behaviors” with the
Gaussian measurements but a few cases with the oversampled partial DCT mea-
surements when the noise level is relatively large. To illustrate the necessity of
the efficiency detection step and to validate the convergence condition (6.5.6),
we test the DCA-springback without the efficiency detection for the randomly
oversampled partial DCT measurements, and we do not remove unaccepted trials.
The results are labeled as “DCA-springback w/o effcy det.” in Figure 6.7, as we see
that the DCA-springback only performs slightly better than the ADMM-`1. Figure
6.7 also shows that the DCA-`1−2 and the IRLS-`p are still sensitive to the coher-
ence of A. For Gaussian measurements, the IRLS-`p with p = 0.5 has the best
performance, followed by the DCA-TL1, the DCA-MCP, the DCA-springback, the
DCA-`1−2, and the ADMM-`1. For oversampled DCT measurements, the DCA-
springback appears to be the best solver, followed by the DCA-MCP, the DCA-`1−2,
and the DCA-TL1, because the noise level is considered in solving the subproblems
of the DCA-springback. In both cases, the DCA-springback consistently performs
better than the ADMM-`1 and the DCA-`1−2. AIHT appears not to perform well for
both matrices. Based on the plots of the DCA-springback and the DCA-springback
without the efficiency detection, the model parameter α matters for the same
solver.

We also validate some theoretical results proved in Section 6.4.2, with Gaussian
measurements perturbed by 45 dB noise. We first study m = 50, n = 160, and s

varying among {10, 11, . . . , 40}, and then consider n = 160, s = 20, and m varying
among {50, 51, . . . , 120}. Errors of the ADMM-`1, the DCA-`1−2, and the DCA-
springback are plotted in Figure 6.8, and the acceptance rates of the DCA-springback
are also displayed. According to our analysis in Section 6.4.2, for an RIP sensing
matrix A and an s-sparse x̄, when s ≤ C (C is given in (6.4.7)) or m is limited by
some constant, the estimation (6.4.1) of the springback-penalized model is tighter
than the estimation (6.3.2) of the `1- and `1−2-penalized models in the sense of
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Figure 6.8: Numerical validation of theoretical results in Section 6.4.2.
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(6.4.5). We see in the left plot of Figure 6.8 that the error of the DCA-springback is
less than the others for small s, and it becomes larger than the others when s exceeds
some constant. The right plot also indicates that the error of the DCA-springback
is less than the others when m is relatively small.

6.6.5 Remarks on numerical results

As observed in the literature, reconstruction results by different models may vary
for different scenarios, and no one can unanimously outperform all the others for all
scenarios. For instance, the IRLS-`p prevails in the incoherent regime but quickly
fails in the coherent regime, see [125, 239]. For incoherent sensing matrices, the IRLS-
`p and the DCA-TL1 perform better than the DCA-`1−2 and the ADMM-`1, while
the DCA-`1−2 performs the best for coherent sensing matrices; see [239, 243]. The
DCA-TL1 is robust, and it performs well for both incoherent and coherent sensing
matrices, while it is less efficient than either the IRLS-`p in the incoherent regime or
the DCA-`1−2 in the coherent regime.

Together with these known facts and our numerical observations, we have the
following remarks on the numerical performance of the DCA-springback:

• For an incoherent sensing matrix: the DCA-springback performs slightly worse
than the IRLS-`p and the DCA-TL1.

• For a coherent sensing matrix: the DCA-springback performs slightly worse
than the DCA-`1−2 but better than the DCA-TL1.

• For a sensing matrix with modest coherence: the DCA-springback performs
comparably with the DCA-MCP, and they perform better than the others.

Similar comparison results are also observed when the measurements are contam-
inated by some noise. For all the three scenarios, the DCA-springback and the
DCA-MCP perform comparably if the parameter µ of the MCP is set as 1/α, and
their performances with well-tuned parameters are also comparable. Moreover, we
see that only the DCA-springback, the DCA-MCP, and the DCA-TL1 are robust
with respect to the coherence of the sensing matrix. The DCA-springback and the
DCA-MCP perform better than the DCA-TL1 in the coherent regime but worse in
the incoherent regime. When the coherence of the sensing matrix is unknown, for
example, when the sensing hardware cannot be modified or upgraded, coherence-
robust algorithms such as the DCA-springback and the DCA-MCP are preferred for
signal reconstruction.
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Chapter 7

The Enhanced Total Variation
Model for Image Reconstruction

The total variation (TV) regularization has phenomenally boosted various variational
models for image processing tasks. We propose to combine the backward diffusion
process in the earlier literature on image enhancement with the TV regularization,
and show that the resulting enhanced TV minimization model is particularly effec-
tive for reducing the loss of contrast. The main purpose of this chapter is to establish
stable reconstruction guarantees for the enhanced TV model from noisy subsampled
measurements with two sampling strategies, non-adaptive sampling for general linear
measurements and variable-density sampling for Fourier measurements. In partic-
ular, under some weaker restricted isometry property conditions, the enhanced TV
minimization model is shown to have tighter reconstruction error bounds than vari-
ous TV-based models for the scenario where the level of noise is significant and the
amount of measurements is limited. The advantages of the enhanced TV model are
also numerically validated by preliminary experiments on the reconstruction of some
synthetic, natural, and medical images.

7.1 Introduction

Since the work of Rudin, Osher, and Fatemi [182], various variational models based on
the total variation (TV) have been intensively studied for image processing problems;
see, e.g., [48, 50] for reviews. Given linear measurements y ∈ Cm observed via

y =MX̄ + e (7.1.1)

from an unknown image X̄ ∈ CN×N , where M : CN×N → Cm is a linear operator
defined component-wisely by

[M(X̄)]j := 〈Mj , X̄〉 = tr(MjX̄
∗),
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for suitable matricesMj with m considerably smaller than N2, and e ∈ Cm is a noise
term bounded by ‖e‖2 ≤ τ with level τ ≥ 0, reconstruction of the unknown X̄ can
be modeled as the following TV minimization problem:

min
X∈CN×N

‖X‖TV s.t. ‖MX − y‖2 ≤ τ, (7.1.2)

where ‖ · ‖TV is the TV semi-norm. Note that the TV semi-norm can be mainly
categorized as the isotropic [46] and anisotropic [47] cases for discrete images. In
this chapter, we discuss how to enhance the canonical constrained TV model (7.1.2)
by the proposed springback regularization in Chapter 6 for image reconstruction and
establish stable reconstruction guarantees.

As profoundly analyzed in [157], the constrained TV model (7.1.2) has the ad-
vantage of reconstructing high-quality images from a relatively small number of mea-
surements. Theoretical analysis in [157] is mainly based on the seminal compressed
sensing (CS) works [41, 74]. Note that the classic CS theory assumes the sparsity of
the (vector) signal of interest or its coefficients under certain transformations. Corre-
spondingly the signal reconstruction can be modeled as some `1-norm minimization
problems. The CS theory can be extended to image reconstruction because natural
images usually have (approximately) sparse gradients. Indeed, mathematically the
TV semi-norm of a discrete image X ∈ CN×N is just the sum of the magnitudes of
all entries |[∇X]j,k| in its gradient ∇X ∈ CN×N×2. That is,

‖X‖TV := ‖∇X‖1 =
∑
j,k

|[∇X]j,k|, (7.1.3)

where the definitions of ∇X and |[∇X]j,k| are given as follows. For any image
X ∈ CN×N represented by an N × N block of pixel intensities with all intensities
Xj,k in [0, 1], the discrete directional derivatives of X ∈ CN×N are defined in a
pixel-wise manner as

Xx : CN×N → C(N−1)×N , (Xx)j,k := Xj+1,k −Xj,k,

Xy : CN×N → CN×(N−1), (Xy)j,k := Xj,k+1 −Xj,k.

The discrete gradient transform ∇ : CN×N → CN×N×2 is defined in a matrix form
as

[∇X]j,k :=



((Xx)j,k, (Xy)j,k) , 1 ≤ j ≤ N − 1, 1 ≤ k ≤ N − 1,

(0, (Xy)j,k) , j = N, 1 ≤ k ≤ N − 1,

((Xx)j,k, 0) , 1 ≤ j ≤ N − 1, k = N,

(0, 0) , j = k = N.
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If the magnitude
|[∇X]j,k| = |(Xx)j,k|+ |(Xy)j,k|,

then it leads to the anisotropic TV semi-norm ‖ · ‖TVa as defined in [47, 81], that is,
the sum of the magnitudes of its discrete gradient

‖X‖TVa :=
∑
j,k

|(Xx)j,k|+ |(Xy)j,k|. (7.1.4)

If
|[∇X]j,k| =

√
(Xx)2

j,k + (Xy)2
j,k,

then it leads to the isotropic TV semi-norm ‖ · ‖TVi as defined in [46]:

‖X‖TVi :=
∑
j,k

√
(Xx)2

j,k + (Xy)2
j,k.

If we regard ∇X as an N2 × 2 matrix, then ‖X‖TVa and ‖X‖TVi are the `1,1 and
`2,1 norms of ∇X, respectively. Since both TV semi-norms are equivalent subject to
a factor of

√
2 in the sense that

‖X‖TVi ≤ ‖X‖TVa ≤
√

2‖X‖TVi , (7.1.5)

similarly to [157], we only consider the anisotropic case for succinctness and the
following discussion can be extended to the isotropic case analogously. Moreover,
note that

‖∇X‖2 =

∑
j,k

(Xx)2
j,k + (Xy)

2
j,k

1/2

in the second component of the enhanced TV regularization (7.1.6) is the `2,2 norm
of ∇X.

Models using the `1-norm are fundamental to various CS problems, while so-
lutions to such models may be over-penalized because the `1 regularization tends
to underestimate the high-amplitude components of the solution, as analyzed in
[83]. Accordingly, many non-convex alternatives have been proposed in the litera-
ture to overcome this pitfall and thus promote sparsity more firmly; see, e.g., the `p
(0 < p < 1) regularization [54, 92], the `1−2 regularization [238, 239], and the trans-
formed `1 regularization [242, 243]. The non-convexity feature in image processing
has also been emphasized in various papers; see, e.g., [159]. Besides, the springback
regularization proposed in Chapter 6, and it can be generalized as the following for
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discrete images:
Rα(X) := ‖∇X‖1 −

α

2
‖∇X‖22, (7.1.6)

where α > 0 is a meticulously-chosen parameter to ensure the positiveness or the well-
definedness of (7.1.6), ‖∇X‖1 is the TV term (7.1.3) and we focus on the anisotropic
definition (7.1.4) in this chapter, and ‖∇X‖22 is the sum of the squared magnitudes
of ∇X. Note that the springback regularization (7.1.6) is of difference-of-convex. To
some extent, it keeps both the nice recoverability of various non-convex surrogates
of the TV regularization and the computability of the original TV regularization. To
be consistent with the TV literature, we call (7.1.6) an enhanced TV regularization
in this chapter.

Non-convex penalties proposed in the CS literature are mainly rooted in the
field of statistics, and they are usually applied in straightforward ways in the image
processing literature. Interestingly, as elaborated in Section 7.1.1, the enhanced TV
regularization (7.1.6) has some intrinsic interpretations from the perspective of image
processing. We are thus encouraged to consider the enhanced TV model

min
X∈CN×N

Rα(X) s.t. ‖MX − y‖2 ≤ τ (7.1.7)

for image reconstruction, and we aim at establishing some stable reconstruction guar-
antees theoretically. It is worth noting that, despite the theoretical reconstruction
guarantees established in Chapter 6 for sparse signals or signals that are sparse after
an orthonormal transform, the guarantees established in Chapter 6 are not applica-
ble to the enhanced TV model (7.1.7). The reason is that the gradient transform
∇ : X → ∇X fails to be orthonormal, as mentioned in [157]. Also, we notice that
the idea of enhancing the TV regularization (the isotropic version) with a subtrac-
tion of a squared norm of the image gradient was skated over in [148], and it was
empirically tested for some image denoising problems despite the lack of rigorous
study for reconstruction guarantees from a few measurements.

7.1.1 An image processing view of the enhanced TV regularization

Solutions to TV-based models may lose contrast across edges. That is, the contrast
of the regions on both sides of an edge may be reduced, and thus blur may occur
near the edge. We refer the reader to [21, 208] for discussions on the loss of contrast
caused by various image processing models using TV regularization.

Partial differential equations (PDEs) and variational approaches have been in-
tensively investigated to enhance the contrast. On the PDE side, some well-known
approaches were proposed to tackle the loss of contrast for image enhancement. For
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example, the shock filter was proposed in [160] to deal with blur-like image degrada-
tions, creating strong discontinuities at image edges and flattening the image within
homogeneous regions. Afterwards, the shock filter has been generalized in many
ways; see, e.g., [6, 229]. Another important example is the forward-and-backward
(FAB) diffusion scheme proposed in [98] to simultaneously remove the noise and en-
hance the contrast. Since then, a number of influential works regarding the FAB
diffusion have been conducted; see, e.g., [226, 228, 230]. Despite that different PDE
schemes were designed, a common feature of these works is that the backward diffu-
sion process is adopted to enhance the contrast of the edges in a concerning image.
Since backward diffusion is a classic example of an ill-posed problem [214], most of
these PDE schemes sound numerically challenging; we refer the reader to [51, 52, 227]
on discretizing and solving these PDEs efficiently. On the variational side, there are
attempts to add negative terms into the variational model to maximize the con-
trast, see, e.g., [94, 162], though their connections with the TV regularization are
not considered.

We remark that the enhanced TV model (7.1.7) has a connection to the back-
ward diffusion approach from the PDE perspective. A detailed explanation in the
context of the Euler–Lagrange (E–L) equation in a continuum setting is included in
Section 7.6.1. Briefly speaking, the term −α

2 ‖∇X‖
2
2 generates an additional back-

ward diffusion term −α∆X into the E–L equation corresponding to the classic TV
regularization. In Figure 7.1, we empirically illustrate that the enhanced TV reg-
ularization (7.1.6) is very effective for some fundamental denoising and deblurring
problems. Figure 7.1 clearly shows that the enhanced TV regularization (7.1.6) out-
performs the original TV regularization in removing noise, reducing loss of contrast,
and maintaining smoothness inside homogeneous regions. These compelling perfor-
mances clearly motivate us to consider theoretical reconstruction guarantees for the
enhanced TV model (7.1.7). Implementation details for reproducing Figure 7.1 are
enclosed in Section 7.6.2.

In Figure 7.1, we also note that the enhanced TV regularization (7.1.6) may not
ideally overcome another drawback of TV: the staircase effect . That is, solutions to
TV-based models may have stair-like edges. Many efforts are trying to avoid this
effect, including the replacement of the TV regularization with an exponentiation
term of it [24], the usage of the infimal convolution of functionals with first- and
second-order derivatives as regularizer [49], the addition of some higher-order terms
into the E–L equation corresponding to the variational TV model [53], the total
generalized variation [36], the usage of some modified infimal convolutions [185, 186]
regarding [49], and many others.



Chapter 7. Enhanced TV model for image reconstruction 166

20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100 120

-2

-1

0

1

2

3

20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1

Figure 7.1: Illustration of the TV and enhanced TV regularization for image de-
noising. Top row: SSIM values of each image; Bottom row: intensity profiles of each
image along the horizontal straight line splitting the image equally.

7.1.2 A compressed sensing view of the enhanced TV regularization

In addition to the PDE and variational perspectives, another interpretation of the
enhanced TV regularization (7.1.6) can be given from the perspective of CS. As
previously discussed, an image X is mostly sparse after the gradient transform ∇ :

X → ∇X. Mathematically, CS amounts to minimizing the `0 norm of the image
gradient, i.e., ‖∇X‖0, which counts the number of non-zero entries of∇X. To bypass
the NP-hard nature of the `0 norm, we typically seek its alternatives which lead to
more tractable models. In the context of image reconstruction, we have the TV
regularization [47, 81, 182]

‖X‖TV =
∑
j,k

|[∇X]j,k| ,

which corresponds to the `1 penalty in CS. We also have the transformed TV regu-
larization [117]

‖X‖TTV =
∑
j,k

(β + 1) |[∇X]j,k|
β + |[∇X]j,k|

with β > 0, which corresponds to the transformed `1 regularization [243] in CS.
Moreover, we have the weighted difference of anisotropic and isotropic TV regular-
ization [139]

‖X‖TVa − α‖X‖TVi =
∑
j,k

(
|(Xx)j,k|+ |(Xy)j,k| − α

√
(Xx)2

j,k + (Xy)2
j,k

)
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and the minimax concave penalty (MCP) [240]

‖X‖MCP−TV =
∑
j,k

φµ(|[∇X]j,k|),

where µ > 0 and

φµ(x) =

|x| − x2/(2µ), |x| ≤ µ,

µ/2, |x| ≥ µ.

Our enhanced TV regularization (7.1.6) can also be written as

Rα(X) =
∑
j,k

[
|[∇X]j,k| −

α

2

(
(Xx)2

j,k + (Xy)
2
j,k

)]
.

In image reconstruction, it is desirable for regularization terms to generate rea-
sonably close approximations of ‖∇X‖0. Since all the regularization terms mentioned
above are separable, we can compare their behavior in terms of each component.
We adopt the anisotropic definition |[∇X]j,k| = |(Xx)j,k| + |(Xy)j,k|, except for the
TVa − αTVi regularization. We set β, µ, and α to 1 for all regularization terms.
We plot the level curves of each component with respect to |(Xx)j,k| and |(Xy)j,k|
in Figure 7.2. Note that the axes of color bars are intended not to be unified for
better visualization. The level lines of the `0 norm are 0 at the origin, 1 at the
axes, and 2 elsewhere. Apart from the convex anisotropic TV regularization, all
other regularization terms are non-convex and promote the approximation behavior
to the `0 norm. We observe from Figure 7.2 that all regularization terms preserve
0 at the origin, indicating that they behave similarly within homogeneous regions
of images. Additionally, our enhanced TV regularization is closer to the `0 norm
than the other terms at both axes. This suggests that the enhanced TV regular-
ization performs analogously to the `0 norm around horizontal and vertical edges.
In comparison, the TVa − TVi regularization yields 0 at both axes. Moreover, we
note that the transformed TV regularization behaves like plain shrinkage from the
anisotropic TV. Furthermore, the truncated definition of the MCP-TV regulariza-
tion provides it with a closer approximation to the `0 norm within the non-axis area
than other regularization terms, suggesting that this regularization may preserve the
behavior of the `0 norm along oblique edges. However, the truncated definition of
the MCP-TV may confound oblique edges with horizontal/vertical edges because it
has the same values from the end of both axes and non-axis areas. Meanwhile, the
enhanced TV regularization performs better than the MCP-TV along the horizontal
or vertical edge because the enhanced TV regularization preserves the behavior of
the `0 norm at the end of box axes better than the MCP-TV. These observations
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suggest that the enhanced TV regularization may be a good proxy of the `0 norm
in the context of image reconstruction. To compare scalar regularization terms and
shrinkage operators for corresponding proximal mappings, we refer to Chapter 6.

Figure 7.2: Level curves of different regularization terms with anisotropic defini-
tions: |[∇X]j,k| = |(Xx)j,k|+ |(Xy)j,k|.

We focus on the anisotropic version of the TV regularization because it is the
`1 norm of the image gradient ∇X, when viewed as a vector. This fact makes
the anisotropic TV regularization better suited for image reconstruction than the
isotropic version. As evidence, the level curves in Figure 7.3 demonstrate that the
isotropic TV regularization provides a worse approximation to the `0 norm than the
anisotropic one. Similar results will also be presented in Section 7.5.

Figure 7.3: Level curves of different regularization terms with isotropic definitions:
|[∇X]j,k| =

√
(Xx)2

j,k + (Xy)2
j,k.

7.1.3 Contributions

In the CS context, it is possible to exactly recover a signal if the signal is sparse
and its measurements are noise-free; otherwise, we can only establish stable recovery
guarantees. The term stable in this chapter is mainly concerned with both inexact
sparsity and measurement noise. Our analysis is conducted under the restricted
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isometry property (RIP) framework studied in [44]. We say that a linear operator
A : Cn1×n2 → Cm has the RIP of order s and level δ ∈ (0, 1) if

(1− δ)‖X‖22 ≤ ‖AX‖22 ≤ (1 + δ)‖X‖22 ∀s−sparse X ∈ Cn1×n2 , (7.1.8)

and the smallest δ for (7.1.8) is said to be the restricted isometry constant (RIC)
associated with A.

We first investigate non-adaptive subsampled linear RIP measurements of an
image X̄ ∈ CN×N with noise level τ > 0. By “non-adaptive,” we mean that the
sampling strategy is not designed with specific structures or under certain distribu-
tions. In Theorem 7.3.6, we show that the enhanced TV model (7.1.7) can stably
reconstruct an image X̄ ∈ CN×N from some non-adaptive subsampled linear RIP
measurements which are contaminated by noise, with the RIP order O(s), the RIP
level δ < 0.6, and the noise level τ > 0. Moreover, the required RIP level δ < 1/3

derived in [157] for the TV model (7.1.2) is weakened to δ < 0.6 for the enhanced
TV model (7.1.7) under the additional condition (7.3.8) for the parameter α. We
also show in Theorem 7.3.9 that the reconstruction error bound in Theorem 7.3.6
can be further improved if more measurements are allowed.

The above reconstruction guarantees for non-adaptive measurements require the
subsampled measurements and the Haar wavelet basis to be sufficiently incoherent.
This requirement is satisfied by many kinds of measurements except for the Fourier
frequency measurements, because low-order wavelets and Fourier measurements are
highly correlated, as analyzed in [123]. Fourier measurements play essential roles
in many imaging tasks. For example, as discussed in [84, 123], the measurement
process of various image processing procedures such as radar, sonar, and computer
tomography can be modeled (with appropriate approximation and discretization) by
taking samples from weighted discrete Fourier transforms. It is also known (see, e.g.,
[141]) that measurements taken for magnetic resonance imaging (MRI) can be well
modeled as Fourier coefficients of the desired image.

On the other hand, many empirical pieces of evidence, including the first works
[140, 141] for compressed sensing MRI, have shown that better reconstruction quality
is possible by subsampling Fourier frequency measurements with a preference for
low frequencies over high frequencies. Thus, we follow the density-variable sampling
strategy proposed in [123] and choose Fourier measurements randomly according to
an inverse square law density. We show that from at least m & s log3(s) log5(N)

such subsampled Fourier measurements with s & log(N), the enhanced TV model
(7.1.7) reconstructs an unknown image X̄ stably with high probabilities. We also
show that the least amount of Fourier measurements required by the enhanced TV
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model (7.1.7) is only (0.6/(1/3))−2 ≈ 30.86% of that by the TV model (7.1.2) as
established in [123].

7.1.4 Related works

We briefly review some TV-related works on image reconstruction. The reconstruc-
tion of a one-dimensional image in CN with an exactly s-sparse gradient from noise-
free, uniformly subsampled Fourier measurements was considered in [41], without
stability analysis concerning the inexact sparsity or noise. It was shown that this
one-dimensional image could be recovered exactly by solving the corresponding TV
model with high probabilities, provided that the number of measurements m satisfies

m & s log(N).

The reconstruction of a one-dimensional image using noisy measurements was then
considered in [38]. The stability of the reconstruction of approximately sparse images
from noisy measurements was first shown in [157] for two-dimensional images and
soon extended to higher-dimensional cases in [156]. More specifically, it was asserted
in [157] that, from some non-adaptive subsampled linear RIP measurements of an
image X̄ ∈ CN×N with the RIP order O(s), the RIP level δ < 1/3, and the noise
level τ > 0, the solution Xopt to the TV model (7.1.2) satisfies

‖X̄ −Xopt‖2 . log

(
N2

s

)(
‖∇X̄ − (∇X̄)s‖1√

s
+ τ

)
, (7.1.9)

where (∇X̄)s is the best s-sparse approximation to the discrete gradient ∇X. More-
over, with more measurements, it was shown in [157] that the log factor in the bound
(7.1.9) could be removed, and thus the bound (7.1.9) can be improved as

‖X̄ −Xopt‖2 .
‖∇X̄ − (∇X̄)s‖1√

s
+ τ. (7.1.10)

In comparison with the bound (7.1.10), the reconstruction error bound for the
enhanced TV model (7.1.7) in Theorem 7.3.9 is tighter if the level of noise τ is
relatively large and the number of measurements m is limited. More discussions
can be found in Section 7.3.3. Besides, the RIP level is assumed to satisfy δ < 1/3

in [157] for the TV model (7.1.2), while we weaken it to δ < 0.6 for the enhanced
TV model (7.1.7). Though δ < 1/3 can be improved, as remarked in [157], the
reconstruction error bounds (7.1.9) and (7.1.10) for the TV model (7.1.2) tend to
be infinity if δ → 0.6 (cf. the proof of Proposition 3 in [157]). On the other hand,
the bounds in Theorems 7.3.6 and 7.3.9 for the enhanced TV model (7.1.7) are still
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reasonably valid when δ → 0.6; meanwhile, the upper bound required for α tends
to be 0 correspondingly. Thus, as δ → 0.6, the bounds (7.3.11) and (7.3.13) in
Theorems 7.3.6 and 7.3.9 for the enhanced TV model (7.1.7) assert the stability of
the TV model (7.1.2) in image reconstruction from a few linear RIP measurements.

As mentioned, guarantees for non-adaptive measurements require the subsam-
pled measurements and the Haar wavelet basis to be sufficiently incoherent. Thus,
the mentioned guarantees in [156, 157] cannot be directly applied to the situation of
Fourier measurements. The first results on image reconstruction from Fourier mea-
surements were derived in [123] and [164], in which uniform and non-uniform1 recon-
struction guarantees are considered, respectively. More specifically, the approach in
[123] requires a larger number of measurements than [164], while its reconstruction
error bound is sharper than that in [164]. In [123], uniform reconstruction guarantees
were derived for two-dimensional images from noisy Fourier measurements, chosen
randomly according to an inverse square law density. Specifically, from at least

m & s log3(s) log5(N)

such subsampled Fourier measurements with s & log(N), the reconstruction error
bound for the TV model (7.1.2) was derived in the same form of (7.1.10). We refer
to, e.g., [2, 3, 121], for more discussions. As we focus on the uniform reconstruction
from non-adaptive measurements, we follow the approach in [123] to consider Fourier
measurements.

7.1.5 Outline of the chapter

The rest of this chapter is organized as follows. In the next section, we summarize
some notation and technical backgrounds. In Section 7.3, we establish stable im-
age reconstruction guarantees for the enhanced TV model (7.1.7) from non-adaptive
subsampled linear RIP measurements and variable-density subsampled Fourier mea-
surements, respectively. Proofs of the results in Section 7.3 are presented in Section
7.4. In Section 7.5, we report some numerical results when the enhanced TV model
(7.1.7) is applied to some image reconstruction problems. Different kinds of images
with subsampled Fourier measurements are tested.

1In the context of compressed sensing, a uniform reconstruction guarantee indicates that a single
random draw of a given measurement operator suffices to recover all sparse or approximately sparse
vectors. In contrast, a non-uniform recovery guarantee states that a single random draw is sufficient
for recovery of a fixed vector.
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7.2 Preliminaries

We first summarize some notation and recall some preliminary technical backgrounds.

7.2.1 Notation

For a matrix X ∈ Rm×n, let supp(X) := {(j, k) : Xj,k 6= 0} be the support of X,
and ‖X‖0 be the cardinality of supp(X). X is said to be s-sparse if ‖X‖0 ≤ s. Let

‖X‖p,q :=

 m∑
j=1

(
n∑
k=1

|Xj,k|p
)q/p1/q

be the entry-wise `p,q norm (p, q ≥ 1) of X. If p = q, ‖X‖p,p is denoted by ‖X‖p
for short. In particular, the `2,2 norm is also known as the Frobenius norm, which
is induced by the inner product 〈X,Y 〉 :=

∑m
j=1

∑n
k=1Xi,jYi,j = tr(XY ∗) for any

X,Y ∈ Cm×n, where X∗ denotes the adjoint of the matrix X. For an index set
S ⊂ {1, 2, . . . ,m} × {1, 2, . . . , n}, let XS ∈ Rm×n be the matrix with the same
entries as X on indices S and zero entries on indices Sc. The only exception is FΩ.
We denote by FΩ the restriction of the bivariate discrete Fourier transform F to
a subset Ω ⊂ {−N/2 + 1, . . . , N/2}2. Logarithm without indicating base is with
respect to base 2.

7.2.2 Haar wavelet system

The Haar wavelet system provides a simple yet powerful sparse approximation of
digital images. The following descriptions on this system can be found in, e.g., [157].
The univariate Haar wavelet system is a complete orthonormal system of square-
integrable functions on the unit interval, consisting of the constant function

H0(t) =

1, 0 ≤ t < 1,

0, otherwise,

the mother wavelet

H1(t) =

1, 0 ≤ t < 1/2,

−1, 1/2 ≤ t < 1,

and the dyadic dilations and translates of the mother wavelet

Hj,k(t) = 2j/2H1(2jt− k)
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for j ∈ N, 0 ≤ k < 2j . The bivariate Haar wavelet system is an orthonormal system
for the space L2(Q) of square-integrable functions on the unit square Q = [0, 1)2,
and it is derived from the univariate Haar system by tensor product. The bivariate
Haar system consists of the constant function and all functions

x = (u, v), H`
j,k(x) = 2jH`(2jx− k),

for j ≥ 0, k ∈ Z2 ∩ 2jQ, and ` ∈ V := {{0, 1}, {1, 0}, {1, 1}}, where

H`(u, v) = H`1(u)H`2(v)

and ` = (`1, `2) ∈ V . Discrete images are isometric to the space ΣN ⊂ L2(Q) of
piecewise-constant functions

ΣN =

{
f ∈ L2(Q) : f(u, v) = cj,k,

j − 1

N
≤ u < j

N
,
k − 1

N
≤ v < k

N

}
(7.2.1)

with cj,k = NXj,k. If N = 2n, then the bivariate Haar basis is restricted to the
2n×2n = N2 basis functions {H`

j,k : j ≤ n−1} and identified as some discrete images
h`j,k via (7.2.1) forms an orthonormal basis for CN×N . For any given ` = (`1, `2) ∈ V ,
we denote by H the bivariate Haar transform

X 7→ (〈X,h`j,k〉)j,k.

By a slight abuse of notation, we also denote by H the unitary matrix representing
this bivariate Haar transform. That is, we denote by HX the matrix product that
generates (〈X,h`j,k〉)j,k.

Some properties of the bivariate Haar wavelet system are summarized below,
and the proofs can be found in [157].

Lemma 7.2.1 Suppose X ∈ CN×N is mean-zero, and let c(k)(X) be the bivariate
Haar coefficient of X having the kth largest magnitude, or the entry of the bivariate
Haar transform HX having the kth largest magnitude. Then, for all k ≥ 1,

|c(k)(X)| ≤ C̃ ‖∇X‖1
k

,

where C̃ > 0 is some constant.

Lemma 7.2.2 Let N = 2n. For any indices (j, k) and (j, k + 1), there are at most
6n bivariate Haar wavelets which are not constant on these indices, i.e., |h`j,k(j, k +

1)− h`j,k(j, k)| > 0.
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Lemma 7.2.3 The bivariate Haar wavelets satisfy ‖∇h`j,k‖1 ≤ 8 for all j, k, `.

7.2.3 Discrete Fourier system

In addition to general RIP measurements, we particularly investigate Fourier mea-
surements. Let N = 2n be a power of 2, where n ∈ N. The following facts of
Fourier basis and transform in the context of imaging can be found in, e.g., [123].
The univariate discrete Fourier basis of CN consists of vectors

ϕk(t) =
1√
N
ei2πtk/N , −N/2 + 1 ≤ t ≤ N/2,

indexed by the discrete frequencies in the range of −N/2 + 1 ≤ k ≤ N/2. The
bivariate discrete Fourier basis of CN×N is a tensor product of univariate bases, i.e.,

ϕj,k(u, v) =
1

N
ei2π(ju+kv)/N , −N/2 + 1 ≤ u, v ≤ N/2,

indexed by the discrete frequencies in the range of −N/2 + 1 ≤ j, k ≤ N/2.

We denote by F the bivariate discrete Fourier transform

X 7→ (〈X,ϕk1,k2〉)k1,k2 .

Again, by a slight abuse of notation, we denote by F the unitary matrix representing
this linear map. That is, we denote by FX the matrix product that generates
(〈X,ϕk1,k2〉)k1,k2 . Moreover, since limited measurements are considered, we denote
by FΩ the restriction of F to a subset of frequencies Ω ⊂ {−N/2 + 1, . . . , N/2}2.

7.3 Main results

We now establish reconstruction guarantees for the enhanced TV model (7.1.7) from
non-adaptive linear RIP measurements and variable-density Fourier measurements,
respectively. The following proposition generalizes Theorem 6.4.1 in Chapter 6 for
signal recovery, and it allows us to bound the norm of an image D when it is close
to the null space of an RIP operator.

Proposition 7.3.1 Let γ ≥ 1, k > 0, δ < 0.6, β1 > 0, β2 > 0, and ε ≥ 0, and let
A be some linear operator A : Cn1×n2 → Cm̃, where n1, n2, m̃ ∈ N. Suppose that A
has the RIP of order k + 4kγ2 and level δ, and that the image D ∈ CN×N satisfies
the tube constraint

‖AD‖2 ≤ ε. (7.3.1)
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Suppose further that for a subset S of cardinality |S| ≤ k, D satisfies the cone
constraint

‖DSc‖1 ≤ γ‖DS‖1 −
β1

2
‖D‖22 + σ + β2 〈E1, E2〉 , (7.3.2)

where E1, E2 could be scalars, vectors, or matrices, and E2 is assumed to satisfy
‖E2‖2 = ‖D‖2. Here ‖ · ‖2 denotes the absolute value for scalars, the usual `2 vector
norm for vectors, and the `2,2 norm (Frobenius norm) for matrices. If β2 satisfies
the posterior verification

β2 ≤
γ
√
k

2K2‖E1‖2
, (7.3.3)

then it holds that

‖D‖2 ≤

√
γ
√
kK1

β1K2
ε+

2

β1
σ .

√
γ
√
k

β1
ε+

1

β1
σ, (7.3.4)

where

K1 :=
3

2
√

1− δ −
√

1 + δ
and K2 :=

√
1 + δ

4

(
K1 +

1√
1 + δ

)
.

Furthermore, we have

‖D‖1 ≤
(2K2 + 1)γ

√
k + 2K2

√
k

2K2

√
γ
√
kK1

β1K2
ε+

2

β1
σ + σ

. γ
√
k

√
γ
√
k

β1
ε+

1

β1
σ + σ.

(7.3.5)

Corollary 7.3.2 There is a linear term of σ in (7.3.5). If

‖D‖2 ≥
√

2σ

β1
,

which is compatible with (7.3.4), then this linear term can be removed. This corollary
will be proved after Proposition 7.3.1.

Remark 7.3.3 In the proof of Proposition 7.3.1, we need to ensure

√
1− δ −

√
1 + δ

2
> 0,

and this is where the requirement δ < 0.6 for the RIP level stems from. Since

lim
δ→0.6

K1

K2
= lim

δ→0.6

4√
1 + δ + 1/K1

= 10, (7.3.6)
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the bounds on ‖D‖2 and ‖D‖1 are still reasonable as δ → 0.6. As the whole analysis
below rests upon Proposition 7.3.1, this fact (7.3.6) suggests that the following recon-
struction error bounds (7.3.11), (7.3.13), and (7.3.18) are all reasonable as δ → 0.6.

Remark 7.3.4 If A is assumed to have the RIP of order 5kγ2 ≥ k + 4kγ2, then
Proposition 7.3.1 still holds. Thus, we assume the order 5kγ2 for simplicity in the
following theorems.

For any image X ∈ CN×N , its derivatives Xx and Xy belong to C(N−1)×N and
CN×(N−1), respectively. Thus, it is convenient to consider the matrices Π0 and Π0

obtained from a matrix Π by concatenating a row of zeros to the bottom and top of Π,
respectively. More concretely, for a matrix Π ∈ C(N−1)×N , we denote by Π0 ∈ CN×N

the augmented matrix with entries

(Π0)j,k =

0, j = 1,

Πj−1,k, 2 ≤ j ≤ N.

Similarly, we denote by Π0 ∈ CN×N the matrix constructed from adding a row of
zeros to the bottom of Π. For a linear operator A : C(N−1)×N → Cm with [A(X)]j =

〈Aj , X〉, we denote by A0 : CN×N → Cm the linear operator with [A0(X)]j =

〈A0
j , X〉. We denote by A0 : CN×N → Cm similarly. It was shown in [157] that the

entire image and its gradients could be related as follows.

Lemma 7.3.5 ([157]) Given X ∈ CN×N and Π ∈ C(N−1)×N ,

〈Π, Xx〉 = 〈Π0, X〉 − 〈Π0, X〉 and 〈Π, XT
y 〉 = 〈Π0, XT〉 − 〈Π0, X

T〉,

where XT denotes the (non-conjugate) transpose of the matrix X.

7.3.1 Reconstruction from non-adaptive linear RIP measurements

We are prepared to state our first result on stable image reconstruction from non-
adaptive linear RIP measurements.

Theorem 7.3.6 Let N = 2n be a power of two, where n ∈ N. Let A : C(N−1)×N →
Cm1 and A′ : C(N−1)×N → Cm1 be such that the concatenated operator [A,A′] has
the RIP of order 5s and level δ < 0.6. Let H : CN×N → CN×N be the orthonormal
bivariate Haar wavelet transform, and B : CN×N → Cm2 be such that the composite
operator BH∗ : CN×N → Cm2 has the RIP of order 2s + 1 and level δ < 1. Let
m = 4m1 +m2, and consider the linear operatorM : CN×N → Cm with components

M(X) =
(
A0(X),A0(X),A′0(XT),A′0(XT),B(X)

)
. (7.3.7)
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Let X̄ ∈ CN×N be an image and Xopt the solution to the enhanced TV model (7.1.7)
withM defined as (7.3.7). If α satisfies

α ≤
√
s

2K2‖∇Xopt‖2
, (7.3.8)

then we have the stable gradient reconstruction results

‖∇X̄ −∇Xopt‖2 .
√√

s

α
τ +

1

α
‖∇X̄ − (∇X̄)s‖1 (7.3.9)

and

‖∇X̄ −∇Xopt‖1 .
√
s

√√
s

α
τ +

1

α
‖∇X̄ − (∇X̄)s‖1 + ‖∇X̄ − (∇X̄)s‖1, (7.3.10)

and the stable image reconstruction result

‖X̄ −Xopt‖2 . log

(
N2

s

)√√
s

α
τ +

1

α
‖∇X̄ − (∇X̄)s‖1

+ log

(
N2

s

)
‖∇X̄ − (∇X̄)s‖1√

s
+ τ.

(7.3.11)

Corollary 7.3.7 Enlightened by Corollary 7.3.2, if

‖∇X̄ −∇Xopt‖2 ≥
√

2

α
‖∇X̄ − (∇X̄)s‖1,

which is compatible with (7.3.9), then the linear term ‖∇X̄ − (∇X̄)s‖1 in (7.3.10)
and hence the term log(N

2

s )‖∇X̄−(∇X̄)s‖1√
s

in (7.3.11) can be removed. This corollary
will be proved after Theorem 7.3.6.

Remark 7.3.8 The proof of Theorem 7.3.6 is inspired by the proof in [157] for the
TV model (7.1.2), in which it was conjectured that the 4m1 measurements derived
from A in the construction (7.3.7) ofM are artifacts of the proof. The components
A0(X), A0(X), A′0(XT), and A′0(XT) are only used for deriving the stable gradient
reconstruction bounds (7.3.9) and (7.3.10). On the other hand, component B(X)

only helps us derive the bound (7.3.11) from (7.3.9) and (7.3.10).

If more measurements are allowed, then the bound (7.3.11) can be further im-
proved, the requirement (7.3.8) on α can be relaxed, and the artificial components
inM can be removed.

Theorem 7.3.9 Let N = 2n be a power of two, where n ∈ N. Let H : CN×N →
CN×N be the orthonormal bivariate Haar wavelet transform, andM : CN×N → Cm

be such that the composite operator MH∗ : CN×N → Cm has the RIP of order
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Cs log3(N) and level δ < 0.6. Let X̄ ∈ CN×N be a mean-zero image or an image
containing some zero-valued pixels, and Xopt be the solution to the enhanced TV
model (7.1.7). If α satisfies

α ≤
√

48s log(N)

K2‖∇Xopt‖2
, (7.3.12)

then we have

‖X̄ −Xopt‖2 .
√√

s

α
τ +

1

α
‖∇X̄ − (∇X̄)s‖1. (7.3.13)

Remark 7.3.10 The RIP requirements in both theorems above indicate that the lin-
ear measurements should be generated from standard RIP matrix ensembles, which
are incoherent with the Haar wavelet system. Many classes of random matrices can
be used to generate RIP matrix ensembles. For example, a matrix in Rm×N2 with
i.i.d. normalized Gaussian random entries has a small RIP constant δs < c with high
probabilities if

m & c−2s log(N2/s),

as shown in [44]. Similar results were extended to sub-Gaussian matrices in [145].
If

m & s log4(N),

then it was proved in [45, 181] that the RIP holds with overwhelming probabilities for
a partial Fourier matrix FΩ ∈ Rm×N2. The RIP also holds for randomly generated
circulant matrices (see [174]) and randomly subsampled bounded orthonormal systems
(see [175]). Most of these mentioned measurements are incoherent with the Haar
wavelet system, but the partial Fourier matrix with uniformly subsampled rows is an
exception. Thus, some specific sampling strategies for Fourier measurements should
be considered. For example, it was asserted in [122] that FΩ ∈ Rm×N2 with

m & s log4(N)

and randomized column signs has the RIP; it was also shown in [123] that FΩ with
rows subsampled according to some power-law densities is incoherent with the Haar
wavelet system after preconditioning.

7.3.2 Reconstruction from variable-density Fourier measurements

As shown in [123], if the measurements are sampled according to appropriate power-
law densities, then they are incoherent with the Haar wavelet system. We consider a
particular variable-density sampling strategy proposed in [123] and derive a partial
stable image reconstruction theorem tailored for Fourier measurements. Following
the idea of [123], our guarantees are based on a weighted `2-norm in measuring noise
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such that high-frequency measurements have a higher sensitivity to noise; that is,
the `2-norm in the constraint ‖MX − y‖2 ≤ τ of the enhanced TV model (7.1.7)
is replaced by a weighted `2-norm model. For the particular scenario with Fourier
measurements, the general linear operatorM is specified as FΩ, which is the restric-
tion of the Fourier transform matrix to a set Ω of frequencies as defined in Section
7.2.3.

Theorem 7.3.11 Let N = 2n be a power of 2, where n ∈ N. Let m and s satisfy
s & log(N) and

m & s log3(s) log5(N). (7.3.14)

Select m frequencies {(ωj1, ω
j
2)}mj=1 ⊂ {−N/1 + 2, . . . , N/2}2 i.i.d. according to

P[(ωj1, ω
j
2) = (k1, k2)] = CN min

(
C,

1

k2
1 + k2

2

)
=: η(k1, k2) (7.3.15)

for −N/2 + 1 ≤ k1, k2 ≤ N/2, where C is an absolute constant and CN is chosen
such that η is a probability distribution. Consider the weight vector ρ = (ρj)

m
j=1 with

ρj =

[
1

η(ωj1, ω
j
2)

]1/2

.

Then we have the following assertion for all mean-zero or zero-valued pixel-containing
images X̄ ∈ CN×N with probability exceeding 1 − N−C log3(s): Given noisy partial
Fourier measurements b = FΩX̄ + e, if

α ≤
√

48s log(N)

K2‖∇Xopt‖2
, (7.3.16)

then the solution Xopt to the model

min
X∈CN×N

‖∇X‖1 −
α

2
‖∇X‖22 s.t. ‖ρ ◦ (FΩX − b)‖2 ≤ τ

√
m (7.3.17)

satisfies

‖X̄ −Xopt‖2 .
√√

s

α
τ +

1

α
‖∇X̄ − (∇X̄)s‖1. (7.3.18)

7.3.3 Further discussion

We supplement more details about the theoretical results presented in Sections 7.3.1
and 7.3.2.

The a posterior verification on α. Three conditions (7.3.8), (7.3.12), and (7.3.16)
on α are required in Theorems 7.3.6, 7.3.9, and 7.3.11, respectively. Determining the
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value of α is possible only if we have a priori estimation on ‖Xopt‖2. Thus, these
conditions can be interpreted as a posterior verification because they can be verified
once Xopt is obtained by solving the model (7.1.7). In practice, we solve the model
(7.1.7) numerically and thus obtain an approximate solution, denoted by X∗, subject
to a preset accuracy ε > 0. That is, ‖Xopt −X∗‖2 ≤ ε. Then, if

α ≤
√
s

2K2(‖∇X∗‖2 + ε)
,

then (7.3.8) is guaranteed; if

α ≤
√

48s log(N)

K2(‖∇X∗‖2 + ε)
,

then (7.3.12) and (7.3.16) are satisfied.

The RIP level δ < 0.6 in Theorems 7.3.6 and 7.3.9. The bound 0.6 is sharp,
as we need to ensure

√
1− δ −

√
1 + δ

2
> 0

(cf. proof in Section 7.4.1). For the reconstruction guarantees derived in [157] for
the TV model (7.1.2), the level is assumed to satisfy δ < 1/3, and it is not sharp
as remarked in [157]. Though δ < 1/3 can be improved, the reconstruction error
bound in [157] for the TV model (7.1.2) tends to be infinity if δ → 0.6. In light
of Remark 7.3.3, the bounds (7.3.11) and (7.3.13) are still valid in this case, and
the upper bound required for α tends to 0 correspondingly with consideration of the
behavior of K2. That is, Theorems 7.3.6 and 7.3.9 can guarantee the stability of the
TV model (7.1.2) when δ → 0.6, resulting in reconstruction error bounds in forms of
(7.3.11) and (7.3.13).

The required amount m of Fourier measurements in Theorem 7.3.11. The
RIP level δ does not appear explicitly in Theorem 7.3.11, while we shall assume

m & sδ−2 log3(s) log5(N)

and the constant δ is eliminated in such an inequality with &; see our proof in Section
7.4.4. The least required amount m for the TV model (7.1.2) shall also satisfy this
relation with s, N , and δ, as proved in [123]. Since the upper bound on the RIP level
δ is enlarged from 1/3 for the TV model (7.1.2) (see [123]) to 0.6 for the enhanced TV
model (7.1.7), the least amount of Fourier measurements required for the enhanced
TV model (7.1.7) should be

(0.6/(1/3))−2 ≈ 30.86%
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of the least amount of Fourier measurements required in [123] for the TV model
(7.1.2).

Inconsistency when α → 0. The enhanced TV regularization (7.1.6) tends to
be the anisotropic TV term as α → 0. At the same time, the reconstruction error
bounds (7.3.11), (7.3.13), and (7.3.18) do not reduce to the corresponding bounds
(7.1.9) and (7.1.10) for the TV model (7.1.2). Note that the bounds (7.3.13) and
(7.3.18) are of the same form. To explain this inconsistency, note that Proposition
7.3.1 is a pillar of the proofs of Theorems 7.3.6, 7.3.9, and 7.3.11. In contrast, the
proof for the TV model (7.1.2) in [157] relies on the following fact: If D satisfies the
tube constraint (7.3.1) and the cone constraint ‖DSc‖1 ≤ γ‖DS‖1 + σ, then it was
shown in [157] that

‖D‖2 .
σ

γ
√
k

+ ε and ‖D‖1 . σ + γ
√
kε. (7.3.19)

Indeed, the left-hand side of the estimation (7.4.2) in the proof of Proposition 7.3.1
contains a quadratic term ‖D‖22 and a linear term ‖D‖2, and only the linear term
remains if β1, β2 → 0, which then leads to the same result as (7.3.19). However, in
the proof of Proposition 7.3.1, we remove this linear term and keep the quadratic
term, and hence the obtained result cannot be reduced to the result (7.3.19) as
β1, β2 → 0. Such an inconsistent situation is also encountered by the springback
model in Chapter 6.

Comparison between (7.1.10) and (7.3.13). We are interested in whether or
not the bound (7.3.13) (as well as the bound (7.3.18), which shares the same form
as (7.3.13)) can be tighter than (7.1.10) in the sense of√√

s

α
τ +

1

α
‖∇X̄ − (∇X̄)s‖1 .

‖∇X̄ − (∇X̄)s‖1√
s

+ τ, (7.3.20)

with a given α > 0. If the image X̄ is known to have an s-sparse gradient, then the
comparison (7.3.20) is reduced to

√
s . ατ.

As s is fixed in this scenario, we can claim that the estimation (7.3.13) is tighter
than the estimation (7.1.10) in the sense of (7.3.20) if

τ &
√
s/α,

i.e., the level of noise τ is relatively large. If the sparsity of ∇X̄ is not assumed, but
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the linear measurements are noise-free, i.e., τ = 0, then the comparison (7.3.20) is
reduced to

s

‖∇X̄ − (∇X̄)s‖1
. α, (7.3.21)

in which the left-hand side of (7.3.21) is an increasing function of s. In order to
discern the scenario where (7.3.21) holds, a key fact from Remark 7.3.10 should be
noticed: for RIP measurements mentioned there, a small numberm of measurements
admits an RIP with a small s. The boundO(s log(N2/s)) for Gaussian measurements
appears not to be monotonic with respect to s. On the other hand, with the implicit
constant factors derived in [181], this bound is indeed monotonically increasing with
respect to s. Thus, if the number of measurements m is limited, which only renders
an RIP with a small s, then (7.3.21) holds. This situation coincides with the intuition
that, as the term ‖∇X̄ − (∇X̄)s‖1 � 1 for many digital images, especially when the
number of measurements is limited (so that s is small), taking a square root shall
lead to a smaller bound than that without doing so.

Together with both scenarios, we can claim that if the level of noise τ is relatively
large and the number of measurements m is limited, then the enhanced TV model
(7.1.7) performs better than the TV model (7.1.2) in the sense of (7.3.20), because
(7.3.20) is guaranteed to hold when√√

s

α
τ +

√
1

α
‖∇X̄ − (∇X̄)s‖1 .

‖∇X̄ − (∇X̄)s‖1√
s

+ τ,

and we can study √√
s

α
τ . τ

and √
1

α
‖∇X̄ − (∇X̄)s‖1 .

‖∇X̄ − (∇X̄)s‖1√
s

separately.

This comparison can be analogously extended to other cases for which the
corresponding reconstruction error bounds are also linear with respect to terms
‖∇X̄ − (∇X̄)s‖1/

√
s and τ . Such examples include the model in [139], which has

the regularization term ‖X‖TVa −‖X‖TVi . For the model in [139], it seems that re-
construction guarantees leading to an error bound without the log factor log(N2/s)

are still missing. Note that this log factor also occurs in the bound (7.1.9) for the
TV model (7.1.2) and the bound (7.3.11) for the enhanced TV model (7.1.7), but
it is removed if the required RIP order increases from O(s) to O(s log3(N)), and
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then both bounds can be improved to (7.1.10) and (7.3.13), respectively. Recon-
struction guarantees for the model in [139] have been investigated in [135]. However,
the derived error bound (see Theorem 3.8 in [135]) still fails to remove the log factor
log(N2/s), despite that the subsampled measurements are required to have the RIP
of order O(s2 log(N)) with a more complicated level δ which depends on N , s, and
the constant C̃ in Lemma 7.2.1.

7.4 Proofs of the main results

In this section, we present the proofs for the theoretical results in Section 7.3.

7.4.1 Proofs of Proposition 7.3.1 and Corollary 7.3.2

Proof of Proposition 7.3.1. We arrange the indices in Sc in order of decreasing
magnitudes (in absolute value) of DSc and divide Sc into subsets of size 4kγ2, i.e.,
Sc = S1

⋃
S2
⋃
· · ·
⋃
Sr, where

r =

⌊
N2 − |S|

4kγ2

⌋
.

In other words, DSc = DS1 +DS2 + · · ·+DSr , where DS1 consists of the 4kγ2 largest-
magnitude components ofD over Sc, DS2 consists of the next 4kγ2 largest-magnitude
components of D over Sc\S1, and so forth. As the magnitude of each component of
DSj is less than the average magnitude ‖DSj−1‖1/(4kγ2) of components of DSj−1 ,

‖DSj‖22 ≤ 4kγ2

(‖DSj−1‖1
4kγ2

)2

=
‖DSj−1‖21

4kγ2
, j = 2, 3, . . . , r.

Thus, combining ‖DSj‖2 ≤
‖DSj−1

‖1
2γ
√
k

with the cone constraint (7.3.2), we have

r∑
j=2

‖DSj‖2 ≤
1

2γ
√
k
‖DSc‖1 ≤

‖DS‖1
2
√
k
− β1

4γ
√
k
‖D‖22 +

σ

2γ
√
k

+
β2

2γ
√
k
〈E1, E2〉 .

The assumption |S| ≤ k leads to ‖DS‖1 ≤
√
|S|‖DS‖2 ≤

√
k‖DS‖2 ≤

√
k‖DS +

DS1‖2, hence we have

r∑
j=2

‖DSj‖2 ≤
‖DS +DS1‖2

2
− β1

4γ
√
k
‖D‖22 +

σ

2γ
√
k

+
β2

2γ
√
k
〈E1, E2〉 . (7.4.1)

Together with the bound (7.4.1), the constraint (7.3.1), and the RIP of A, we have
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ε
≥
‖A
D
‖ 2
≥
‖A

(D
S

+
D
S
1
)‖

2
−

r ∑ j=
2

‖A
D
S
j
‖ 2

≥
√

1
−
δ‖
D
S

+
D
S
1
‖ 2
−
√

1
+
δ

r ∑ j=
2

‖D
S
j
‖ 2

≥
√

1
−
δ‖
D
S

+
D
S
1
‖ 2
−
√

1
+
δ

( ‖D
S

+
D
S
1
‖ 2

2
−
β

1
‖D
‖2 2

4γ
√
k

+
σ

2
γ
√
k

+
β

2
〈E

1
,E

2
〉

2
γ
√
k

)
=

( √ 1
−
δ
−
√

1
+
δ

2

) ‖D
S

+
D
S
1
‖ 2

+
β

1

√
1

+
δ‖
D
‖2 2

4γ
√
k

−
σ
√

1
+
δ

2γ
√
k
−
β

2

√
1

+
δ
〈E

1
,E

2
〉

2
γ
√
k

.

The assumption δ < 0.6 ensures
√

1− δ −
√

1 + δ/2 > 0. Hence, we have

‖DS+DS1‖2 ≤
2

2
√

1− δ −
√

1 + δ

(
ε− β1

√
1 + δ‖D‖22
4γ
√
k

+
σ
√

1 + δ

2γ
√
k

+
β2

√
1 + δ

2γ
√
k
〈E1, E2〉

)
.

As ‖D‖2 is bounded by the sum of ‖DS +DS1‖2 and
∑r

j=2 ‖DSj‖2, it satisfies
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‖D
‖ 2
≤

3 2
‖D

S
+
D
S
1
‖ 2
−

β
1

4
γ
√
k
‖D
‖2 2

+
σ

2
γ
√
k

+
β

2

2γ
√
k
〈E

1
,E

2
〉

≤
3
ε

2
√

1
−
δ
−
√

1
+
δ

+

(
3

2√
1
−
δ
−
√

1
+
δ

+
1

√
1

+
δ

)( −
β

1

√
1

+
δ

4
γ
√
k
‖D
‖2 2

+

√
1

+
δ

2
γ
√
k
σ

+
β

2

√
1

+
δ

2γ
√
k
〈E

1
,E

2
〉)

:=
K

1
ε
−
β

1
K

2

γ
√
k
‖D
‖2 2

+
2
K

2

γ
√
k
σ

+
2β

2
K

2

γ
√
k
〈E

1
,E

2
〉.

Thus, we have the quadratic inequality

β1K2

γ
√
k
‖D‖22 + ‖D‖2 −

2β2K2

γ
√
k
〈E1, E2〉 −K1ε−

2K2

γ
√
k
σ ≤ 0. (7.4.2)
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The requirement (7.3.3) on β2 ensures that

‖D‖2 −
2β2K2

γ
√
k
〈E1, E2〉 ≥ ‖D‖2 −

〈
E1

‖E1‖2
, E2

〉
≥ 0,

where the last inequality is due to Cauchy–Schwarz inequality and ‖E2‖2 = ‖D‖2.
Then, we have

β1K2

γ
√
k
‖D‖22 −K1ε−

2K2

γ
√
k
σ ≤ 0,

which yields the estimation (7.3.4). Finally, we derive (7.3.5). As |S| ≤ k, we have
‖DS‖1 ≤

√
k‖DS‖2. Then, together with the requirement (7.3.3) on β2 and the cone

constraint (7.3.2), we have

‖D‖1 ≤ (γ + 1)‖DS‖1 −
β1

2
‖D‖22 + σ + β2 〈E1, E2〉

≤ (γ + 1)‖DS‖1 + σ +
γ
√
k

2K2
‖D‖2

≤ (γ + 1)
√
k‖DS‖2 + σ +

γ
√
k

2K2
‖D‖2

≤ (γ + 1)
√
k‖D‖2 + σ +

γ
√
k

2K2
‖D‖2

=
(2K2 + 1)γ

√
k + 2K2

√
k

2K2
‖D‖2 + σ,

(7.4.3)

which completes the proof of Proposition 7.3.1. �

Proof of Corollary 7.3.2. In the second inequality of (7.4.3), we use the fact−β1
2 ‖D‖

2
2 ≤

0. If ‖D‖2 satisfies ‖D‖2 ≥
√

2σ/β1, then −β1
2 ‖D‖

2
2 + σ ≤ 0 and it follows from

(7.4.3) that

‖D‖1 ≤ (γ + 1)‖DS‖1 −
β1

2
‖D‖22 + σ + β2 〈E1, E2〉

≤ (γ + 1)‖DS‖1 +
γ
√
k

2K2
‖D‖2

≤ (2K2 + 1)γ
√
k + 2K2

√
k

2K2
‖D‖2,

which completes the proof of Corollary 7.3.2. �

7.4.2 Proof of Theorem 7.3.6 and Corollary 7.3.7

We first prove the stable gradient reconstruction results (7.3.9) and (7.3.10), and
then obtain the stable image reconstruction result (7.3.11) with the aid of a strong
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Sobolev inequality. The following Sobolev inequality was derived in [157] for images
with multivariate generalization given in [156].

Lemma 7.4.1 (Strong Sobolev inequality) Let B : CN×N → Cm be a linear
map such that BH∗ : CN×N → Cm has the RIP of order 2s + 1 and level δ < 1,
where H : CN×N → CN×N is the bivariate Haar transform. Suppose that D ∈ CN×N

satisfies the tube constraint ‖BD‖2 ≤ ε. Then

‖D‖2 ≤ C2

[(
‖∇D‖1√

s

)
log

(
N2

s

)
+ ε

]
.

Proof of Theorem 7.3.6. The proof is divided into the stable gradient and image
reconstructions, respectively.

Stable gradient reconstruction. We plan to apply Proposition 7.3.1 to the term
∇(Xopt − X̄). Let V = Xopt − X̄ and L = (Vx, V

T
y ). For convenience, let P

denote the mapping of indices which maps the index of a nonzero entry in ∇V to
its corresponding index in L. By the definition of ∇, L has the same norm as ∇V ,
i.e., ‖L‖2 = ‖∇V ‖2 and ‖L‖1 = ‖∇V ‖1. Thus, it suffices to apply Proposition
7.3.1 to L. Let A1, A2, . . . , Am1 , A

′
1, A

′
2, . . . , A

′
m1

be such that [A(Z)]j = 〈Aj , Z〉 and
[A′(Z)]j =

〈
A′j , Z

〉
.

Cone constraint. Let S denote the support of the largest s entries of ∇X̄. On one
hand, it holds that

‖∇Xopt‖1 −
α

2
‖∇Xopt‖22 ≤ ‖∇X̄‖1 −

α

2
‖∇X̄‖22

= ‖(∇X̄)S‖1 + ‖(∇X̄)Sc‖1 −
α

2
‖∇X̄‖22.

On the other hand, we have

‖∇Xopt‖1 −
α

2
‖∇Xopt‖22

=‖(∇X̄)S + (∇V )S‖1 + ‖(∇X̄)Sc + (∇V )Sc‖1 −
α

2
‖∇X̄ +∇V ‖22

≥‖(∇X̄)S‖1 − ‖(∇V )S‖1 + ‖(∇V )Sc‖1 − ‖(∇X̄)Sc‖1

− α

2

(
‖∇X̄‖22 + 2

〈
∇X̄,∇V

〉
+ ‖∇V ‖22

)
.

Thus, we obtain

‖(∇V )Sc‖1 ≤ ‖(∇V )S‖1 + 2‖(∇X̄)Sc‖1 +
α

2
‖∇V ‖22 + α

〈
∇X̄,∇V

〉
= ‖(∇V )S‖1 + 2‖∇X̄ − (∇X̄)s‖1 −

α

2
‖∇V ‖22 + α

〈
∇Xopt,∇V

〉
.
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As L contains all the same nonzero entries as ∇V , it satisfies the following cone
constraint:

‖LP (S)c‖1 ≤ ‖LP (S)‖1 + 2‖∇X̄ − (∇X̄)s‖1 −
α

2
‖L‖22 + α

〈
∇Xopt,∇V

〉
.

Tube constraint. We note that V satisfies a tube constraint as

‖MV ‖22 = ‖(MXopt − y)− (MX̄ − y)‖22
≤ 2‖MXopt − y‖22 + 2‖MX̄ − y‖22
≤ 4τ2.

Then, it follows from Lemma 7.3.5 that

| 〈Aj , Vx〉 |2 = |
〈
[Aj ]

0, V
〉
− 〈[Aj ]0, V 〉 |2

≤ 2|
〈
[Aj ]

0, V
〉
|2 + 2| 〈[Aj ]0, V 〉 |2

and

|
〈
A′j , V

T
y

〉
|2 = |

〈
[A′j ]

0, V T
〉
−
〈
[A′j ]0, V

T
〉
|2

≤ 2|
〈
[A′j ]

0, V T
〉
|2 + 2|

〈
[A′j ]0, V

T
〉
|2.

Thus, L also satisfies a tube constraint:

‖[A A′]L‖22 =
m∑
j=1

| 〈Aj , Vx〉 |2 + |
〈
A′j , V

T
y

〉
|2 ≤ 2‖M(V )‖22 ≤ 8τ2.

By virtue of Proposition 7.3.1 with γ = 1, k = s, β1 = β2 = α, σ = 2‖∇X̄ −
(∇X̄)s‖1, ε = 2

√
2τ , E1 = ∇Xopt and E2 = ∇V , the requirement (7.3.8) of α

ensures that

‖∇Xopt −∇X̄‖2 = ‖L‖2 ≤

√
2
√

2
√
sK1τ

αK2
+

4

α
‖∇X − (∇X)s‖1.

Furthermore, by (7.3.5), we have ‖∇Xopt −∇X̄‖1 = ‖L‖1 and

‖L‖1 ≤
(4K2 + 1)

√
s

2K2

√
2
√

2
√
sK1τ

αK2
+

4

α
‖∇X̄ − (∇X̄)s‖1 + 2‖∇X̄ − (∇X̄)s‖1,

(7.4.4)
which completes the proof of the stable gradient reconstruction results (7.3.9) and
(7.3.10).
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Stable image reconstruction. We now apply the strong Sobolev inequality given
in Lemma 7.4.1 to Xopt − X̄. As

‖B(Xopt − X̄)‖2 ≤ ‖M(Xopt − X̄)‖2 ≤ 2τ,

we have

‖Xopt − X̄‖2 . log

(
N2

s

)(
‖∇Xopt −∇X̄‖1√

s

)
+ τ.

Together with the bound (7.3.10), we have the stable image reconstruction result
(7.3.11). �

Proof of Corollary 7.3.7. If

‖∇X̄ −∇Xopt‖2 ≥
√

2

α
‖∇X̄ − (∇X̄)s‖1,

then it follows from Corollary 7.3.2 that the linear term of ‖∇X̄ − (∇X̄)s‖1 in
the estimation (7.4.4) can be removed. Thus, from (7.4.4) to (7.3.11), the term
log(N

2

s )‖∇X̄−(∇X̄)s‖1√
s

in (7.3.11) can be also removed. �

7.4.3 Proof of Theorem 7.3.9

We apply Proposition 7.3.1 to c = HV as opposed to ∇V . Some properties of the
bivariate Haar wavelet system, characterized as Lemmas 7.2.1, 7.2.2, and 7.2.2, are
needed in the proof. Besides, a classical Sobolev inequality weaker than the strong
Sobolev inequality in Lemma 7.4.1 is needed.

Lemma 7.4.2 ([157]) Let X ∈ CN×N be a mean-zero image or contain some zero-
valued pixels. Then

‖X‖2 ≤ ‖∇X‖1. (7.4.5)

Proof of Theorem 7.3.9. Let V = Xopt− X̄, and apply Proposition 7.3.1 to c = HV ,
where c(1) := c(1)(V ) denotes the Haar coefficient corresponding to the constant
wavelet, and c(j) := c(j)(V ), j ≥ 2, denotes the (j − 1)-st largest-magnitude Haar
coefficient among the remaining. We use this ordering because Lemma 7.2.1 applies
only to mean-zero images. Let h(j) denote the Haar wavelet associated with c(j).
We have assumed that the composite operatorMH∗ : CN×N → Cm has the RIP of
order Cs log3(N) and level δ < 0.6, and we now derive the constant C.

Cone constraint on c = HV . As shown in Section 7.4.2, we have

‖(∇V )Sc‖1 ≤ ‖(∇V )S‖1 + 2‖∇X̄− (∇X̄)s‖1−
α

2
‖∇V ‖22 +α

〈
∇Xopt,∇V

〉
. (7.4.6)



Chapter 7. Enhanced TV model for image reconstruction 190

Recall that S is the index set of s largest-magnitude entries of ∇V . It follows from
Lemma 7.2.2 that the set Ω of wavelets which are non-constant over S has the
cardinality at most 6s log(N), i.e., |Ω| ≤ 6s log(N). Decompose V as

V =
∑
j

c(j)h(j) =
∑
j∈Ω

c(j)h(j) +
∑
j∈Ωc

c(j)h(j) =: VΩ + VΩc .

Because of the linearity of ∇, we have ∇V = ∇VΩ +∇VΩc . By the construction of
Ω, we have (∇VΩc)S = 0, which leads to (∇V )S = (∇VΩ)S . Then, it follows from
Lemma 7.2.3 that

‖(∇V )S‖1 = ‖(∇VΩ)S‖1 ≤ ‖∇VΩ‖1 ≤
∑
j∈Ω

|c(j)|‖∇h(j)‖1 ≤ 8
∑
j∈Ω

|c(j)|.

Let k = 6s log(N), ‖cΩ‖1 and ‖cΩc‖1 denote
∑

j∈Ω |c(j)| and
∑

j∈Ωc |c(j)|, respec-
tively. Concerning the decay of the wavelet coefficients in Lemma 7.2.1, we have
|c(j+1)| ≤ C̃‖∇V ‖1/j. Together with the cone constraint (7.4.6) for ∇V , we have

‖cΩc‖1 ≤
N2∑

j=s+1

|c(j)| ≤ C̃
N2∑

j=s+1

‖∇V ‖1
j − 1

(�)
≤ C ′ log

(
N2

s

)

≤C ′ log

(
N2

s

)(
2‖(∇V )S‖1 + 2‖∇X̄ − (∇X̄)s‖1 −

α

2
‖∇V ‖22 + α

〈
∇Xopt,∇V

〉)
≤C ′ log

(
N2

s

)(
16‖cΩ‖1 + 2‖∇X̄ − (∇X̄)s‖1 −

α

2
‖∇V ‖22 + α‖∇Xopt‖2‖∇‖2‖V ‖2

)
(∗)
≤C ′ log

(
N2

s

)(
16‖cΩ‖1 + 2‖∇X̄ − (∇X̄)s‖1 −

α

2
‖∇V ‖22 + α

√
8‖∇Xopt‖2‖V ‖2

)
,

where (�) is due to the property of partial sum of harmonic series [64], and (∗) is due
to the fact ‖∇‖22 ≤ 8 [46]. As we prepare to apply Proposition 7.3.1 to c = HV , we
need to bound ‖∇V ‖2 below in terms of ‖V ‖2 = ‖c‖2, where ‖V ‖2 = ‖c‖2 is due to
Parseval’s identity and the fact that {h(j)} forms an orthonormal basis for CN×N .
As ‖∇V ‖2 ≥ 1√

2N
‖∇V ‖1, the classical Sobolev inequality (7.4.5) implies

‖∇V ‖2 ≥
1√
2N
‖V ‖2. (7.4.7)

Thus we have

‖cΩc‖1 ≤C ′ log

(
N2

s

)(
16‖cΩ‖1 + 2‖∇X̄ − (∇X̄)s‖1 −

α‖c‖22
4N2

+

α
√

8‖∇Xopt‖2‖c‖2
)
.

(7.4.8)
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Tube constraint ‖MH∗c‖2 ≤ 2τ . As X̄ and Xopt are in the feasible region of the
model (7.1.7), for c = HV = HXopt −HX̄, we have

‖MH∗c‖2 = ‖MXopt −MX̄‖2 ≤ ‖MXopt − y‖2 + ‖MX̄ − y‖2 ≤ 2τ.

Under the derived cone and tube constraints on c, along with the RIP con-
dition on MH∗, Theorem 7.3.9 is proved by applying Proposition 7.3.1 and using
γ = 16C ′ log(N2/s) ≤ 32C ′ log(N), k = 6s log(N), σ = 2C ′ log

(
N2/s

)
‖∇X̄ −

(∇X̄)s‖1, E1 =
√

8‖∇Xopt‖2, E2 = ‖c‖2, β1 = αC ′ log
(
N2/s

)
/(2N2), and β2 =

αC ′ log
(
N2/s

)
. In fact, 5kγ2 with both particular k and γ leads to the required RIP

order Cs log3(N) for MH∗. Together with all these factors and Proposition 7.3.1,
we know that if

α ≤
√

8
√

6s log(N)

K2‖∇Xopt‖2
,

then it holds that

‖V ‖2 = ‖c‖2 ≤

√
64N2

√
6s log(N)K1

αK2
τ +

8N2

α
‖∇X̄ − (∇X̄)s‖1,

which leads to the estimation (7.3.13). �

7.4.4 Proof of Theorem 7.3.11

The proof of Theorem 7.3.11 follows the approach of Theorem 7.3.9, in which the
local coherence of the sensing basis (Fourier) with respect to the sparsity basis (Haar
wavelet) plays a major role.

Definition 7.4.3 (Local coherence [123]) The local coherence of an orthonor-
mal basis Φ = {φj}Nj=1 of CN with respect to the orthonormal basis Ψ = {ψk}Nk=1 of
CN is the function µloc(Φ,Ψ) ∈ RN defined coordinate-wise by

µloc
j (Φ,Ψ) = sup

1≤k≤N
| 〈φj , ψk〉 |, j = 1, 2, . . . , N.

The following result indicates that, with high probabilities, signals can be stably
reconstructed from subsampled measurements with the local coherence function ap-
propriately used. It can be deemed as a finite-dimensional analog to [175, Theorem
2.1], and a proof can be found in [123].

Lemma 7.4.4 Let Φ = {φj}Nj=1 and Ψ = {ψk}Nk=1 be two orthonormal bases of
CN . Assume the local coherence of Φ with respect to Ψ is point-wise bounded by the
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function κ in the sense of
sup

1≤k≤N
| 〈φj , ψk〉 | ≤ κj .

Fix δ > 0 and integers N , m, and s such that s & log(N) and

m & δ−2‖κ‖22s log3(s) log(N),

and choose m (possibly not distinct) indices j ∈ Ω ⊂ {1, 2, . . . , N} i.i.d. from the
probability measure ν on {1, 2, . . . , N} given by

v(j) =
κ2
j

‖κ‖22
.

Consider the matrix A ∈ Cm×N with entries Aj,k = 〈φj , ψk〉, j ∈ Ω, k ∈
{1, 2, . . . , N}, and consider the diagonal matrix G = diag(g) ∈ Cm×m with

gj =
‖κ‖2
κj

, j = 1, . . . ,m.

Then with probability at least 1−N−c log3(s), the RIC δs of the preconditioned matrix
1√
m
GA satisfies δs ≤ δ.

In particular, the following result describes the local coherence of the orthonor-
mal Fourier basis with respect to the orthonormal Haar wavelet basis, which was
initially occurred in [123].

Lemma 7.4.5 (Theorem 4 in [123], slightly modified) Let N = 2n be a power
of 2, where n ∈ N. The local coherence µloc of the orthonormal two-dimensional
Fourier basis {ϕk1,k2} with respect to the orthonormal bivariate Haar wavelet basis
{h`j,k} in CN×N is bounded by

µloc
k1,k2 ≤ κ(k1, k2) := min

(
1,

18π

max(|k1|, |k2|)

)
κ′(k1, k2)

:= min

(
1,

18π
√

2

(|k1|2 + |k2|2)1/2

)
,

and one has ‖κ‖2 ≤ ‖κ′‖2 ≤
√

17200 + 502 log(N).

Remark 7.4.6 For Theorem 4 in [123], n ≥ 8 was assumed to ensure

17200 + 502 log(N) ≤ 2700 log(N)

and hence ‖κ‖2 ≤ ‖κ′‖2 ≤ 52
√

log(N). We regard the assumption as a restriction
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on the size N ×N of images, thus we remove this assumption and adopt the bound
√

17200 + 502 logN in our following proof. Besides, it was conjectured in [123] that
the factor 2700 is due to lack of smoothness for the Haar wavelets, and this factor
might be removed by considering smoother wavelets.

Proof of Theorem 7.3.11. Let P ∈ Cm×m be the diagonal matrix encoding the
weights in the noise model. That is, P = diag(ρ), where, for κ′ as in Lemma 7.4.5,
ρ ∈ Cm is a vector converted from the matrix

ρ(k1, k2) =
‖κ′‖2

κ′(k1, k2)
= C

√
1 + log(N) max

(
1,

(|k1|2 + |k2|2)1/2

18π

)

with (k1, k2) ∈ Ω. Note that Pg = ρ ◦ g for g ∈ Cm. Together with the particular
incoherence estimate in Lemma 7.4.5, Lemma 7.4.4 implies that with probability at
least 1 − N−2c log3(s) (as c is a generic constant, the factor 2 of c is removed in the
statement of Theorem 7.3.11), A := 1√

m
PFΩH∗ has the RIP of order s and level

δ < 0.6 once s & log(N2) & log(N) and

m & sδ−2 log3(s) log2(N2) & sδ−2 log3(s) log2(N).

By the assumption m & s log3(s) log5(N) (in fact, m & sδ−2 log3(s) log5(N) should
be assumed), we can assume that A has the RIP of order s̄ = Cs log3(N) and
level δ < 0.6, where C is the constant derived in Theorem 7.3.9. Moreover, let V =

Xopt−X̄ and apply Proposition 7.3.1 again to c = HV , where c(1) := c(1)(V ) denotes
the Haar coefficient corresponding to the constant wavelet, and c(j) := c(j)(V ) (j ≥ 2)
denotes the (j − 1)-st largest-magnitude Haar coefficient among the remaining. To
apply Proposition 7.3.1, we need to find cone and tube constraints for c = HV .

Cone constraint on c = HV : which is the same as (7.4.8) in the proof of Theorem
7.3.9.

Tube constraint : ‖Ac‖2 = ‖AHV ‖2 ≤
√

2τ , since

m‖AHV ‖22 = ‖PFΩH∗HV ‖22 = ‖ρ ◦ (FΩV )‖22
≤ ‖ρ ◦ (FΩX

opt − b)‖22 + ‖ρ ◦ (FΩX̄ − b)‖22
≤ 2mτ2.

The rest is similar to the proof of Theorem 7.3.9, and the only trivial difference
is the tube constraint, where 2τ there is replaced by

√
2τ here. Hence, we omit the

following steps, and the estimation for the setting in this theorem, with constants
removed, is the same as (7.3.13). �
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7.5 Numerical experiments

We now report some experimental results to validate the effectiveness and numerical
solvability of the enhanced TV model (7.1.7). As previously mentioned, the model
(7.1.7) is of difference-of-convex, and it can be solved by some well-developed algo-
rithms in the literature. We include the details of an algorithm in Section 7.6.3. For
comparison, we consider the TV model (7.1.2) and the TVa−TVi model in [139]. In
our experiments, the TV model (7.1.2) is solved by the split Bregman method stud-
ied in [100], and the TVa−TVi model is solved by the difference-of-convex functions
algorithm (DCA) with subproblems solved by the split Bregman method in [139].
Details of the tuned parameters of these algorithms are stated in Section 7.6.3.

As displayed in Figure 7.4, we test the standard Shepp–Logan phantom, three
more synthetic piecewise-constant images (Shape, Circle, and USC Mosaic), two
natural images (Pepper and Clock), and two medical images (Spine and Brain).
Two sampling strategies are considered in our experiments. The first one is the
radial lines sampling, and the other one is the strategy (7.3.15) proposed in Theorem
7.3.11, which is referred to as the MRI-desired sampling strategy below. All codes
were written by MATLAB R2021b, and all numerical experiments were conducted
on a laptop (16 GB RAM, Intel CoreTM i7-9750H Processor) with macOS Monterey
12.1.

Figure 7.4: Test images.
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Example #1: Shepp–Logan phantom. The Shepp–Logan phantom is a standard
image in the filed of image reconstruction. Our experiments for this image are
organized into three parts. The first part concentrates on the reconstruction of the
Shepp–Logan phantom of size 256×256 from noise-free measurements, and α is fixed
as 0.8 in the enhanced TV model (7.1.7). We sample along 15, 8, and 7 radial lines,
corresponding to sampling rates 6.44%, 3.98%, and 3.03%, respectively. We also
take MRI-desired measurements with rates 2.29%, 1.91%, and 1.53%. As shown in
Figure 7.5, the enhanced TV model (7.1.7) produces accurate reconstruction in all six
sampling settings, and reconstruction quality is much better than those in comparison
when the amount of samples is limited (e.g., 7 radial lines and 1.53% MRI-desired
measurements). This observation confirms the result presented in Section 7.3.3,
which state that the reconstruction error bound (7.3.18) for the enhanced TV model
(7.1.7) is tighter than (7.1.10) for the TV model (7.1.7) with a limited amount of
noise-free measurements. As mentioned in Section 7.3.3, such a result also pertains
to the comparison between the enhanced TV model (7.1.7) and the TVa−TVi model
in [139].

Table 7.1 presents the relative errors in the Frobenius sense and SSIM values in
the format of “relative error (SSIM value)” for comparison. The advantages of the
enhanced TV model (7.1.7) become apparent when the available measurements are
limited (e.g., when the sampling rate is below 3.03%). However, when measurements
are relatively sufficient, as in the cases of 15 lines and eight lines, the enhanced TV
model (7.1.7) does not produce the least error reconstruction. Notably, though the
outperformance of the enhanced TV model (7.1.7) is not sustained as measurements
become sufficient, the difference of three models is too tiny to be visually observed.
Furthermore, it is worth noting that the SSIM values are 1.0000 for the enhanced
TV model (7.1.7) in all six sampling settings, indicating that this model’s stability
with respect to the number of measurements is well illustrated for the Shepp–Logan
phantom image. We also report the performance of the enhanced isotropic TV model
(labeled as “Enhanced TV-isotropic” in Table 7.1), using the algorithm described in
Section 7.6.3. However, we observe that the enhanced isotropic TV model does not
perform better than the enhanced anisotropic TV model (7.1.7), and it even fails
for the case of 7 lines, reporting 8.794E+13 (0.0000) and implying that α = 0.8 is
severely large for it. If α = 0.6 for the enhanced isotropic TV model, then 0.3970
(0.6288) is reported for the case of 7 lines. This observation can be partially explained
by our discussion in Section 7.1.2 and partially explained by the fact that the value
of isotropic TV is less than that of anisotropic TV. In the following experiments, we
investigate only the enhanced anisotropic TV model (7.1.7).

The second part illustrates the robustness of the enhanced TV model (7.1.7)
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with respect to noise. In this case, we still set α to 0.8 in the model (7.1.7), and
we take measurements along 15 lines (corresponding to a 6.44% sampling rate)
and use 6.5% MRI-desired samples. The Fourier measurements are perturbed by
Gaussian noise with standard derivations (“std” for short) of 0.04, 0.06, and 0.08,
respectively. The contamination process is implemented in MATLAB commands:
For any image X with size N × N , we first compute its Fourier measurements
by the fast Fourier transform (FFT), i.e., F=fft2(X)/N. Then we perturb F by
F=F+1/sqrt(2)*(std*randn(size(F))+std*1i*randn(size(F))).

The relative errors and SSIM values listed in Table 7.2 show that the enhanced TV
model (7.1.7) is the most robust one. In particular, in terms of SSIM values, the
enhanced TV model (7.1.7) produces much better reconstruction quality, and the
superiority is more apparent when the level of noise increases. These results assert
the theoretical result in Section 7.3.3 that the enhanced TV model (7.1.7) has a
tighter reconstruction error bound than the TV model (7.1.2) and the TVa − TVi

model in [139] when the level of noise is relatively large.

The third part focuses on the phase transition of reconstruction success rates. A
reconstruction is considered successful if the relative error of the reconstructed image
is less than 10−3. We consider the Shepp–Logan phantom with size 64 × 64 in this
part. We choose α among {0.7, 0.8, . . . , 2.7} for the enhanced TV model (7.1.7). We
choose the number of measurements m from 3 to 12 radial lines for radial sampling
and among {100, 140, 180, . . . , 900} for MRI-desired sampling. For each case, we
test five times and report the success rate. According to Theorem 7.3.11, stable
reconstruction can be achieved if samples are enough in the sense of (7.3.14) and the
model parameter α is bounded in the sense of (7.3.16). The results in Figure 7.6
assert that a successful reconstruction via the enhanced TV model (7.1.7) requires
relatively sufficient samples and a reasonably bounded parameter α, thus validating
results in Theorem 7.3.11.
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Figure 7.6: Phase transitions with respect to m and α.
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Example #2: Synthetic images. Example #1 shows the superiority of the en-
hanced TV model (7.1.7) for Shepp–Logan phantom with limited samples. The
purpose of this study is to further assert this superiority. We consider the radial
line sampling and validate this superiority by testing three synthetic images: Shape,
Circle, and USC Mosaic. We also fix α = 0.8 in the enhanced TV model (7.1.7).
When the number of measurements is limited enough, all three models fails to gen-
erate good reconstructions. Bearing in mind that the criteria of the limitation on
the amount of measurements are different for three models, we now show some cases
that the reconstruction via the enhanced TV model (7.1.7) is particularly good while
those via the TV model (7.1.2) and the TVa − TVi model in [139] may fail. The
reconstruction results are displayed in Figure 7.7, and the relative errors and SSIM
values are reported in Table 7.3. From both Figure 7.7 and Table 7.3, the recon-
struction of the enhanced TV model (7.1.7) is significantly better than the other two
models.

We also take this example to test how the inner iterations can affect the overall
performance of the algorithms under comparison. The algorithm presented in Section
7.6.3 adopts DCA as the outer iteration and uses the ADMM to solve each DCA
subproblem. When the maximum number of inner ADMM iterations is increased
from 1,000 to 2,000, the numerical results are reported in the fifth column of Figure
7.7, labeled as “Enhanced TV-2,000”. We see that even if the enhanced TV model
(7.1.7) with at most 1,000 inner iterations is good enough to generate a satisfactory
reconstruction, e.g., for Circle and USC Mosaic, increasing the number of inner
iterations can further reduce the relative errors by up to several orders of magnitude.
This observation provides a simple recipe for higher-accuracy reconstruction.

Example #3: Natural images. We further validate the superiority of the en-
hanced TV model (7.1.7) by testing it on two natural images: Peppers and Clock.
We set α to 1 in the enhanced TV model (7.1.7) for both images and display the
reconstruction results from 9.16% MRI-desired samples in Figure 7.8. We also report
the relative errors in the Frobenius sense and SSIM values for each reconstruction
from MRI-desired samples of rates 9.16%, 13.7%, 18.3%, and 22.9% in Table 7.4.

However, it is worth noting that the enhanced TV model (7.1.7) may not per-
form as effectively for natural images as it does for the images in Examples #1 and
#2 due to the more complicated (non-piecewise-constant) edges in natural images.
Nonetheless, this observation is not surprising as the enhanced TV model (7.1.7)
is a generalization of the TV model (7.1.2), which performs better for piecewise-
constant images than natural images. The enhanced TV model (7.1.7) retains the
main feature of the TV regularization while also reduces the loss of contrast.



Chapter 7. Enhanced TV model for image reconstruction 200

F
ig
u
re

7.
7:

Sh
ap

e,
C
ir
cl
e,

an
d
U
SC

M
os
ai
c:

C
om

pa
ri
so
n
of

th
re
e
m
od

el
s
w
it
h
lim

it
ed

m
ea
su
re
m
en
ts
.



Chapter 7. Enhanced TV model for image reconstruction 201

T
ab

le
7.
3:

R
el
at
iv
e
er
ro
rs

an
d
SS

IM
va
lu
es

of
th
e
re
co
ns
tr
uc

te
d
im

ag
es

in
F
ig
ur
e
7.
7.

TV
T

V
a
−

T
V
i

En
ha

nc
ed

TV
En

ha
nc

ed
TV

-2
,0

00
Sh

ap
e

(1
.2

9%
)

0.
30

94
(0

.5
46

6)
0.

25
03

(0
.5

45
8)

0.
02

66
(0

.9
93

2)
0.

02
61

(0
.9

93
7)

Ci
rc

le
(3

.8
6%

)
0.

03
94

(0
.9

70
5)

0.
04

98
(0

.9
43

0)
7.

41
1E

-0
8

(1
.0

00
0)

6.
81

5E
-1

3
(1

.0
00

0)
US

C
Mo

sa
ic

(1
.9

5%
)

0.
04

05
(0

.9
03

2)
0.

04
39

(0
.9

02
4)

8.
01

3E
-0

5
(1

.0
00

0)
4.

20
6E

-0
7

(1
.0

00
0)

T
ab

le
7.
4:

R
el
at
iv
e
er
ro
rs

an
d
SS

IM
va
lu
es

of
re
co
ns
tr
uc

ti
on

s
of

tw
o
na

tu
ra
li
m
ag
es

w
it
h
va
ri
ou

s
sa
m
pl
in
g
ra
te
s.

TV
T

V
a
−

T
V
i

En
ha

nc
ed

TV
Pe

pp
er

s
(9

.1
6%

)
0.

07
71

(0
.8

32
7)

0.
08

23
(0

.7
74

8)
0.

07
18

(0
.8

43
5)

Pe
pp

er
s

(1
3.

73
%)

0.
05

97
(0

.8
79

3)
0.

06
24

(0
.8

40
9)

0.
05

36
(0

.8
90

8)
Pe

pp
er

s
(1

8.
31

%)
0.

04
47

(0
.9

13
9)

0.
04

98
(0

.8
80

0)
0.

04
14

(0
.9

20
8)

Pe
pp

er
s

(2
2.

89
%)

0.
03

88
(0

.9
29

2)
0.

04
24

(0
.9

03
5)

0.
03

51
(0

.9
35

8)
Cl

oc
k

(9
.1

6%
)

0.
04

04
(0

.9
01

0)
0.

04
40

(0
.8

29
7)

0.
03

79
(0

.9
12

4)
Cl

oc
k

(1
3.

73
%)

0.
02

88
(0

.9
35

6)
0.

03
19

(0
.8

88
4)

0.
02

72
(0

.9
42

1)
Cl

oc
k

(1
8.

31
%)

0.
02

13
(0

.9
56

3)
0.

02
46

(0
.9

21
8)

0.
02

03
(0

.9
59

2)
Cl

oc
k

(2
2.

89
%)

0.
01

82
(0

.9
64

7)
0.

02
05

(0
.9

39
3)

0.
01

69
(0

.9
67

4)



Chapter 7. Enhanced TV model for image reconstruction 202

F
ig
u
re

7.
8:

P
ep
pe

rs
an

d
C
lo
ck
:
C
om

pa
ri
so
n
of

th
re
e
m
od

el
s
w
it
h
th
e
M
R
I-
de

si
re
d
sa
m
pl
in
g
w
it
h
SS

IM
va
lu
es

re
po

rt
ed

.



Chapter 7. Enhanced TV model for image reconstruction 203

Example #4: Medical images. Finally, we apply the enhanced TV model (7.1.7)
to two medical images: Spine and Brain. We again set α to 1 and use 15.3% MRI-
desired samples for the reconstruction of Spine and 9.16% for Brain. The recon-
structed images are displayed in Figure 7.10, and it is evident that that the enhanced
TV model (7.1.7) produces better reconstructions compared to the other models. We
also test more sampling rates and report the SSIM values of reconstructions with each
rate in Figure 7.9. We observe that the superiority of the enhanced TV model (7.1.7)
is more apparent when the sampling rate is relatively low. Therefore, the enhanced
TV model (7.1.7) is preferred when measurements are limited. Similar to Exam-
ple #3, the enhanced TV model (7.1.7) performs less effectively for Example #4
than Examples #1 and #2 due to the non-piecewise-constant edges of these medical
images.
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Figure 7.9: Spine and Brain: SSIM values of reconstructions with various sampling
rates.
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7.6 Supplementary sections

7.6.1 The enhanced TV model in a continuum setting

Let u : Ω→ R be an image, where the image domain Ω is a bounded and open subset
of R2. The TV denoising model in [182] for a noisy image u0 : Ω→ R is formulated
as

min
u
ETV(u) :=

∫
Ω
|∇u|dx+

µ

2

∫
Ω

(u(x)− u0(x))2dx, (7.6.1)

where x = (x1, x2) ∈ Ω, |∇u| =
√

(∂x1u)2 + (∂x2u)2, and µ > 0 balances the TV
term and the data fidelity term. Note that the isotropic TV proposed in [182] is
used in the model (7.6.1). Though the anisotropic TV defined in [81] is used in the
enhanced TV regularization (7.1.6), the main purpose of this section is to explain
how the TV is enhanced in the sense of (7.1.6). Thus, we adopt the model (7.6.1) for
simplicity. We refer the reader to [147] for the anisotropic TV flow. More specifically,
the enhanced (isotropic) TV denoising model in a continuum setting can be written
as

min
u
EETV(u) :=

∫
Ω
|∇u|dx− α

2

∫
Ω
|∇u|2dx+

µ

2

∫
Ω

(u(x)− u0(x))2dx. (7.6.2)

Then, by computing the first-order variation of the functional, the Euler–Lagrange
equation associated with the energy functional EETV(u) in the distributional sense is

0 = −∇ ·
[
∇u
|∇u|

]
+ α∆u+ µ(u− u0) with

∂u

∂n

∣∣∣∣
∂Ω

= 0, (7.6.3)

where n denotes the outer normal derivative along the boundary ∂Ω of Ω.

Alternatively, as [182], we could use the gradient descent marching with artificial
time t. That is, the solution procedure of the Euler–Lagrange equation (7.6.3) uses
a parabolic equation with time t as an evolution parameter. This means, for u :

Ω× [0, T ]→ R, we solve

ut = −∂EETV

∂u
= ∇ ·

[
∇u
|∇u|

]
− α∆u− µ(u− u0) for t > 0, x ∈ Ω, (7.6.4)

with a given initial condition u(x, 0) and the boundary condition

∂u

∂n
|∂Ω = 0.

Note that there is a backward diffusion term −α∆u in the evolution equation (7.6.4).
Thus, as t increases, we approach a denoised and deblurred version of the image if
the blur is assumed to follow such a diffusion process.
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If the energy functional EETV(u) has a minimum, then the minimizer must satisfy
the Euler–Lagrange equation (7.6.4). Certainly, the existence of the minimizer of
EETV is unknown for an arbitrary α. On the other hand, with

α < µ inf
x∈Ω

|u(x)|2

|∇u(x)|2
,

the Lagrangian

LETV(∇u, u, x) := |∇u| − α

2
|∇u|2 +

µ

2
(u(x)− u0(x))2

is bounded below by |∇u(x)|+ µ−α
2 |u(x)|2−µu(x)u0(x)+ |u0(x)|2, which is a convex

function with respect to variables ∇u and u. Hence, EETV is bounded below, and any
stationary point u∗ of EETV (including global and local minimizers) must be finite and
satisfy the corresponding Euler–Lagrange equation (7.6.4) involving the backward
diffusion term. This requirement on α explains the rationale of the assumption on

the upper bound of α in Theorems 7.3.6, 7.3.9, and 7.3.11 (e.g., α ≤
√

48s log(N)

K2‖∇Xopt‖2 in
Theorems 7.3.9 and 7.3.11).

7.6.2 Implementation details for enhanced TV denoising

For denoising, let the noisy image be y = X̄+e ∈ CN×N . The denoising model using
the enhanced TV regularization (7.1.6) is formulated as

min
X∈CN×N

‖∇X‖1 −
α

2
‖∇X‖22 +

µ

2
‖y −X‖22, (7.6.5)

where µ > 0 is a parameter balancing the enhanced TV regularization term and the
data fidelity term. Note that the model (7.6.5) is the discretization of the model
(7.6.2). The model (7.6.5) can be solved by the DCA in [212, 213], and its subprob-
lems can be solved by the splitting Bregman iteration in [100]. We summarize the
resulting algorithm as Algorithm 2 below, in which MaxDCA denotes the maximum
number of the DCA iterations and MaxBreg denotes is the maximum number of the
Bregman iterations.

To reproduce Figure 7.1, we test the noisy Strip image (displayed in Figure 7.1)
with size 128 × 128. The parameters for Algorithm 2 are set as α = 1.2, µ = 0.8,
β = 1, MaxDCA = 10, and MaxBreg = 1,000. We contaminate the test image by
adding random values onto each pixel from a normal distribution with mean 0 and
standard deviation 0.6, without normalizing all pixel intensities such that they are
in the range of [0, 1]. To match the total number of iterations, we adopt the same
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Algorithm 2: Solving the unconstrained denoising model (7.6.5)
Input: Define X0 = 0, z = 0, k = 0, dx = dy = 0, MaxDCA and MaxBreg

1 while k < MaxDCA do
2 bx = by = 0, p = 0;
3 while p < MaxBreg do
4 u =

(
µ+ β∇T∇

)−1 (
µy + βDT

x (dx − bx) + βDT
y (dy − by)

)
;

5 dx = shrink
(
Dxu+ bx + αDxX

k/β, 1/β
)
;

6 dy = shrink
(
Dyu+ by + αDyX

k/β, 1/β
)
;

7 bx = bx +Dxu− dx;
8 by = by +Dyu− dy;
9 p← p+ 1;

10 end
11 Xk = u;
12 k ← k + 1;
13 end

parameters for the splitting Bregman iteration for solving the TV denoising model
except that the number of the splitting Bregman iterations is set as 10,000.

7.6.3 DCA for the enhanced TV model

We apply the mentioned DCA in [212, 213] to solve the enhanced TV model (7.1.7).
We denote by DxX and DyX the horizontal and vertical components of ∇X, re-
spectively, where Dx and Dy can be deemed as two operators. The DCA replaces
the second component α

2 ‖∇X‖
2
2 of the enhanced TV regularization term (7.1.6) by

a linear majorant
〈
X −Xk, ξk

〉
, where

ξk ∈ ∂
(α

2
‖∇X‖22

)
= {α∇T∇Xk},

and then solves the resulting convex optimization problem to generate the iterate
Xk+1. Ignoring the constant term 〈Xk, ξk〉 in the objective function, the iterative
scheme of the DCA reads as finding Xk+1 that minimizes

min
X∈CN×N

‖DxX‖1 + ‖DyX‖1 − α〈DxX,DxX
k〉 − α〈DyX,DyX

k〉

s.t. ‖MX − y‖2 ≤ τ.
(7.6.6)

Convergence of the DCA (7.6.6) can be found in, e.g., [13, 212, 213]. Recall that a
convex function F : Rd → R is said to be ρ-strongly convex if F (x)− ρ

2‖x‖
2
2 is convex

on Rd. A simple but critical fact ensuring the convergence is that the component
α
2 ‖∇X‖

2
2 is strongly convex either if X is mean-zero or if X contains zero-valued

pixels (cf. the classical Sobolev inequality (7.4.5) and Equation (7.4.7)).
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To solve (7.6.6), we suggest using the benchmark alternating direction method
of multipliers (ADMM) in [99]. Clearly, Xk+1 is also a solution to the reformulated
problem

min
X∈CN×N

‖dx‖1 + ‖dy‖1 − α〈dx, DxX
k〉 − α〈dy, DyX

k〉,

s.t. MX − y − z = 0,

z ∈ B(0, τ) := {x ∈ Rm : ‖x‖2 ≤ τ},

DxX = dx, DyX = dy.

Introducing three Lagrange multipliers λ, bx, and by, we write the augmented La-
grangian function of (7.6.7) as

Lβ,µ(X, dx, dy, z, bx, by, λ) := ‖dx‖1 + ‖dy‖1 − α〈dx, DxX
k〉 − α〈dy, DyX

k〉

+
µ

2
‖z − (MX − y)− λ‖22 +

β

2
‖dx −DxX − bx‖22 +

β

2
‖dy −DyX − by‖22,

where µ, β > 0 are penalty parameters. Implementations of the ADMM to (7.6.6) are
included as Algorithm 3 below, in which MaxDCA denotes the maximum number of
the DCA iterations, MaxADMM is the maximum number of the ADMM iterations
for (7.6.7) with a given Xk, and “tol” is the tolerance for the DCA iterations.

Algorithm 3: DCA for the enhanced TV model (7.1.7)
Input: Define X0 = 0, z = 0, k = 0, dx = dy = 0, MaxDCA, MaxADMM, and

tol
1 while k < MaxDCA and ‖Xk −Xk−1‖2 > tol do
2 bx = by = 0, p = 0;
3 while p < MaxADMM do
4 u =(

µM∗M+ β∇T∇
)−1 (

µM∗(y − z − λ) + βDT
x (dx − bx) + βDT

y (dy − by)
)
;

5 dx = shrink
(
Dxu+ bx + αDxX

k/β, 1/β
)
;

6 dy = shrink
(
Dyu+ by + αDyX

k/β, 1/β
)
;

7 z = PB(0,τ)(Mu− y + λ);
8 bx = bx +Dxu− dx;
9 by = by +Dyu− dy;

10 λ = λ+ (Mu− y)− z;
11 p← p+ 1;
12 end
13 Xk = u;
14 k ← k + 1;
15 end
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If the TV term ‖X‖TVa = ‖∇X‖1 is replaced by the isotropic version, then
DxX and DxX in (7.6.6) or dx and dy in (7.6.7) do not decouple, but we can still
update dx and dy in a closed-form manner. Like the extension from the anisotropic
TV to the isotropic one in [100], to solve the enhanced isotropic TV model, we merely
need to replace lines 5 and 6 in Algorithm 3 with

s =
√
|Dxu+ bx + αDxXk/β|.2 + |Dyu+ by + αDyXk/β|.2;

dx = max(s− 1/β, 0). ∗ (Dxu+ bx + αDxX
k/β)./s;

dy = max(s− 1/β, 0). ∗ (Dyu+ by + αDyX
k/β)./s;

where the point . before operations denotes entry-wise operations.

In our numerical experiments, to implement Algorithm 3, we set µ = 103, β =

10, MaxDCA = 15, tol = 10−10 (for noise-free measurements) or 10−3 (for noisy
measurements), and MaxADMM = 1,000. For the TVa − TVi model in [139], we
use the same penalty parameters and stopping criterion for running the DCA; and
for the split Bregman method in solving the DCA subproblem, we set the maximum
numbers of outer and inner iterations as 50 and 20, respectively. The parameters for
Bregman iterations were suggested in [139], and they coincide with the maximum
number of the inner ADMM iterations in Algorithm 3, as 50× 20 = 1, 000. For the
TV model (7.1.2), we adopt the same penalty parameters and tolerance for outer
iterations. We set the maximal numbers of outer and inner iterations to be 50 and
200, respectively; both numbers were suggested in [139].
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Chapter 8

Conclusion and Outlook

In this chapter we make some conclusions and discuss possible directions of future
work involving deep neural networks.

8.1 Conclusion

In Chapter 2, we analyze an exactness-relaxing hyperinterpolation and point out a
potential development of hyperinterpolation that the exactness requirement may be
dismissed with the stability and convergence resulting maintained. We claim that
the required exactness degree 2n in constructing an original hyperinterpolation in
[196] can be relaxed to n+ k with 0 < k ≤ n. Such relaxation is valid for k at least
to n+ 1, because the projection property Lnf = f for all f ∈ Pk does not maintain
for any non-trivial polynomial spaces.

In Chapter 3, we propose efficient hyperinterpolation to approximate singular
and oscillatory functions in the spirit of the product-integration rule. This approx-
imation scheme is new and easy to be implemented. We also obtain error bounds
in cases of K ∈ L1(Ω), L2(Ω), and C(Ω), respectively. Our theoretical analysis and
numerical experiments make it legitimate to apply the proposed scheme to solve
problems involving singularities and oscillatory behaviors. On the other hand, ef-
ficient hyperinterpolation heavily relies on the accurate or stable evaluation of the
modified moments. Thus, much more effort is necessary to understand our scheme’s
implementation to approximate the function F = Kf with various singular and
oscillatory terms K.

In Chapter 4, we investigate the approximation scheme of hyperinterpola-
tion on the sphere. The quadrature rules used in the construction of hyperinter-
polation are not required to be exact for any polynomials but only to satisfy the
Marcinkiewicz–Zygmund property, and we give the corresponding error estimate.
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Such an approximation scheme without the quadrature exactness assumption is re-
ferred to as the unfettered hyperinterpolation. If the quadrature rules use QMC
designs, then the error estimate can be refined. To emphasize the particularity of
QMC designs, we refer to the hyperinterpolation using QMC designs as quadrature
points as the QMC hyperinterpolation. Note that the QMC hyperinterpolation can
be regarded as a special case in the general framework of the unfettered hyperin-
terpolation. The general and refined estimates are split into two terms: a term
representing the error estimate of the original hyperinterpolation of full quadrature
exactness and another term introduced as compensation for the loss of exactness
degrees. The newly introduced term may not converge to zero as the degree of hy-
perinterpolation tends to ∞, and we need to control it in practice. The numerical
experiments show that the construction of hyperinterpolation using quadrature rules
without exactness is feasible, and they verify the error estimates given in Sections 4.3
and 4.4. The general framework of the unfettered hyperinterpolation on the sphere
may be extended to the scheme of hyperinterpolation on other regions, such as the
disk [106], the square [39], the cube [40, 224], and the spherical triangles [206].

In Chapter 5, we propose and investigate a quadrature-based spectral method
(5.1.12) for solving the Allen–Cahn equation (5.1.2). The purpose of investigating
spectral methods is to lift the stringent condition imposed on the time stepping size
τ in the literature on numerical methods for the Allen–Cahn and related phase-field
equations. Instead, we impose mild conditions on the degree N of the polynomial
numerical solutions. The motivation of involving quadrature rules is to provide more
precise analysis for the numerical solutions that are computed on computers and
to confront the practical situation where the data samples may not be obtained
from quadrature points where we desire. Thanks to the recent development of nu-
merical integration on the sphere, our scheme (5.1.12) is an intrinsic methods on the
sphere, which is different from the numerical methods for equations on the Euclidean
spaces. Namely, we use coordinates intrinsic to the sphere and a sphere-based mesh
to discretize the PDE rather than considering the parameterization of the sphere or
extending into a narrow band domain around the sphere and then using the extrinsic
coordinates and an Euclidean-based mesh for discretization. As a result, our scheme
(5.1.12) is consistent with the dimension of the original problem and maintains the
intrinsic properties on the sphere. This consistency also suggests that our scheme
(5.1.12) can also be extended to closed smooth surfaces diffeomorphic to the sphere
(see, e.g., the manipulation of the change of variables in [102]). Moving forward, our
approach can be applied to other PDEs in the form of (5.1.1), where the nonlinear
part N(u) is linearized by its hyperinterpolation. The theoretical analysis of the
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resulting scheme may follow the procedure in this chapter, with modifications in-
volving of the definition of certain PDEs. The implementation process is also similar
to that in this chapter. Furthermore, our idea on the sphere can also be extended
to other compact manifolds and bounded, closed regions where hyperinterpolation
has been or can be established. For such an extension, the Marcinkiewicz–Zygmund
inequality has been investigated on compact manifolds in [89]. However, we utilize
the property that our basis functions, the spherical harmonics, happen to be the
eigenfunctions of the negative Laplace-Beltrami operator, and the eigenvalues have
explicit expressions. Hence a potential obstacle to this extension is the underde-
veloped spectral theory of the Laplace-Beltrami operator on these manifolds, which
may complicate implementation in the sense that the differential operators should
be discretized in an additional step. Nonetheless, our method shows promise for
numerically solving a wide range of semi-linear PDEs in bounded, closed regions of
Rd where hyperinterpolation can be defined.

In Chapter 6, we proposed a weakly convex penalty, named the springback
penalty, for signal reconstruction from incomplete and inaccurate measurements.
The springback penalty inherits major theoretical and numerical advantages from
the convex `1 penalty and its various non-convex alternatives. We established exact
and stable reconstruction results for the springback-penalized model (6.1.5) under the
same RIP condition as the BP model (6.1.3); both the sparse and nearly sparse signals
are considered. The springback-penalized model (6.1.5) is particularly suitable for
signal reconstruction with a large level of noise or a limited number of measurements.
We verified the effectiveness of the model and its computational tractability. The
springback penalty provides a new tool to construct effective models for various
sparsity-driven reconstruction problems arising in many areas such as compressed
sensing, signal processing, image processing, and least-squares approximation.

In Chapter 7, we focused on enhancing the canonical constrained total vari-
ational (TV) minimization model for image reconstruction by the spingback regu-
larization Chapter 6. The enhanced TV model improves the original TV model by
adding a backward diffusion process to further reduce the loss of contrast. The recon-
struction guarantees of the enhanced TV model (7.1.7) for non-adaptive subsampled
linear RIP and variable-density subsampled Fourier measurements were theoretically
established. For non-adaptive linear RIP measurements, the RIP level δ requirement
was relaxed from δ < 1/3 (which was derived for the TV model (7.1.2) in [157]) to
δ < 0.6. The reconstruction error bounds estimated in Theorems 7.3.6 and 7.3.9 also
imply reasonable reconstruction error estimations for the TV model (7.1.2) when
δ → 0.6. In contrast, the bounds derived in [157] for the TV model (7.1.2) tend
to be infinity as δ → 0.6. For variable-density sampled Fourier measurements, the
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required minimum number of measurements of the enhanced TV model (7.1.7) was
shown to be around 30.86% of that established in [123] for the TV model (7.1.2).
This improvement is due to the relaxation of the requirement on δ. It is worth noting
that we only consider the anisotropic TV, and proofs of the main theoretical results
can be easily extended to the isotropic TV case. In addition, our results can also
be generalized in several other ways. For example, one can consider other sampling
strategies, such as those in [2, 164], for Fourier samples as considered in Theorem
7.3.11. For the guarantees analysis with Fourier measurements, noise is measured
by the weighted `2-norm (see (7.3.17)). One can consider some other norms to mea-
sure noise, such as those in [2, 164]. Our theoretical results for two-dimensional
images can also be extended to higher dimensional signals, as considered in [2, 156].
Furthermore, it also seems promising to apply the enhanced TV model (7.1.7) to
other problems such as image inpainting and super-resolution problems, combin-
ing the enhanced TV regularization (7.1.6) with other data fidelity terms to model
some problems such as image segmentation and motion estimation, and using the
enhanced TV regularization (7.1.6) in combination with other widely-used convex
and/or non-convex regularizers to model various more challenging image processing
problems.

8.2 Towards deep neural networks

Numerical analysis involves designing and analyzing algorithms that solve continuous
mathematics problems using numerical approximation. These algorithms generate
approximate but accurate solutions to challenging problems in natural sciences and
engineering whose exact solutions may be impossible or prohibitively expensive to
calculate.

Apart from the information-based situation considered in this thesis, another
challenge arising from real-world applications for numerical analysis is the high di-
mensionality. High-dimensional problems always occur for various reasons, including
using models with a large number of variables and measuring sampled data by hun-
dreds of different quantities. Moreover, high-dimensional problems also imply the
information-based situation, for example, data in high-dimensional cases is often
unstructured. Meanwhile, numerical analysts are confronted by at least two tricky
issues on the way to high-dimensional problems:

Firstly and notably, the difficulty of solving high-dimensional problems by classic
numerical methods grows extraordinarily rapidly as the number of variables (or the
dimension) increases, which is now widely known as the curse of dimensionality.
A common experience is that the cost of an algorithm grows exponentially with
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dimension, making it prohibitive in the regime of moderate or large dimensions.
To a certain degree, high dimensions can be compensated by a sufficient degree of
smoothness, e.g., the assumption u0 ∈ Hs(Sd−1) with s > d − 1 in Chapter 5. Yet,
making a smoothness assumption is impractical because the smoothness of function is
inherited from real-world problems that we cannot control (e.g., images and cartoon-
like functions). Secondly, modeling complex behavior in nature requires a sufficiently
large number of parameters, expecting adequate data samples that match the model
complexity. However, data sampling may be prohibitive or expensive, and only a
limited number of samples may be available for further investigation.

Hence, an efficient method for high-dimensional problems should lift the curse
of dimensionality and be overparameterized. The past decade has witnessed the
astonishing success of artificial intelligence (AI) in science and engineering. Deep
neural networks, considered the “workhorse” leading this massive wave of artificial
intelligence, happen to satisfy the above mentioned two preferred properties. In prac-
tice, deep neural networks seem to perform incredibly well on problems where the
input dimensions are very high, and this surprising performance cannot be explained
within a classical approximation framework since classical results always suffer from
the curse of dimensionality; see reviews in [104, 163]. Another mystery of deep neu-
ral networks is the observation that highly overparameterized deep neural networks
generalize well [158]; that is, they do not fit training data too tightly (known as
overfitting) and hence perform well on test data.

Deep neural network-based methods (or deep learning methods) fill the gap
between high-dimensional problems and classical numerical methods. However, it is
widely acknowledged in academia that a convincing mathematical explanation of the
enormous success of deep learning needs to be developed. Some early-stage results on
the theoretical side of deep learning are recently summarized in [22]. Thus, a possible
future direction following this thesis would be confined to the intersection between
numerical analysis and deep learning, and the core problems to be investigated are

Why do neural networks perform well in very high-dimensional environments, and
how can we utilize this property for high-dimensional numerical analysis and

natural sciences?

Some specific problems with related backgrounds, significance, and potential methods
are presented in the following context.

Within the classic framework of learning theory [65, 66], the performance of a
learning algorithm can be measured by a sum of the approximation error, general-
ization error, and optimization error, which corresponds to three research directions,
namely, expressivity, generalization, and learning/optimization. Related to topics in
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this thesis, the first two may be considered. Though we work within the framework
of learning theory, it should be noted that the classical theory cannot satisfactorily
explain the success of deep learning; see some justification on why a new theory is
needed in [22].

Expressivity. The expressivity of deep learning may be the wealthiest area
in terms of mathematical theories at present; see a recent survey article [71]. It
helps to examine the approximation power of various neural networks and enhance
our understanding of their architectures from a synergistic view of applied harmonic
analysis and approximation theory. Perhaps, the most common approach to obtain
a neural network approximation error bound is to show that the target function has
a decomposition in terms of some fundamental building blocks with controllable de-
composition coefficients and then to show that each of these blocks can be efficiently
captured by deep networks. Such decomposition could be achieved by wavelets or
their mathematical cousins, such as shearlets, ridgelets or curvelets, or by global
representations such as (generalized) Fourier series. For target functions in classi-
cal smoothness spaces, however, the approximation by their decomposition suffers
from the curse of dimensionality. That is, the neural network approximation error
bounded using such ideas also suffers from the curse of dimensionality, which sounds
impractical for high-dimensional problems. Regarding this issue, we may consider
the following two research questions.

Can we introduce new function spaces or classes of target functions to (partially)
eliminate the curse of dimensionality?

Answering this question provides a remedy for the curse of dimensionality because
the search for new high-dimensional function spaces or classes is always a driving
issue when dealing with high-dimensional approximation, as commented in [71, Sec.
8.10.2]. Some new spaces or classes may explain why neural networks are efficient
tools in high-dimensional function approximation, and such a search shall provide
more reliable and accurate guides for deep learning in real-world applications.

Can we improve the current results when the target functions belong to some
classical smoothness spaces?

Answering this question, though not breaking the curse of dimensionality, links deep
learning methods to traditional mathematical problems with more solid analysis
because many mathematical theories are derived in some classical smoothness spaces.
For example, we may provide more solid analysis for deep learning methods for
solving partial differential equations (PDEs) in combination with the PDE theory,
most of which is, however, developed in some classical smoothness spaces.
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Generalization. In contrast to expressivity, generalization of deep learning
may be the least understood part of deep learning theory. It helps to describe the
out-of-sample performance of learning algorithms. This property has been intensively
studied in the field of statistical learning theory: assuming the training samples are
i.i.d. drawn from a probability distribution, one can make use of concentration
inequalities to bound the generalization error. If the set of training samples is a
sequence of samples drawn from a product probability space, this advanced version
of the learning task is known as online learning. We propose the following two
research questions regarding generalization in two different settings.

Can we establish an online deep learning theory when the set of training samples is
a sequence of samples drawn from the product probability space with possibly

different Borel probability measures?

Can we quantify the performance of a deep learning algorithm if the training
samples are given in the sense that we do not have further information (e.g.,

probability distribution) on these samples or the luxury to query more?

Answering both questions advances our understanding of the generalization of neural
networks towards a more general setting: one from batch learning to online learning,
and the other from i.i.d. training samples to a much more practical situation.

Apart from the above questions within the framework of deep learning theory,
the following research topic may help to explore the enhancement of classic numerical
methods by deep learning.

PDEs and integral equations. As long-standing topics in numerical analysis,
PDEs and integral equations are proposed to describe the physical world. Classical
numerical methods for PDEs and integral equations suffer from the curse of dimen-
sionality, which may need to be improved in high-dimensional regimes. Due to the
approximation power of neural networks for high-dimensional functions, it is not
surprising that a neural network ansatz could successfully solve equation models.
Since 2017, deep learning-based methods for PDEs have significantly advanced, with
highlights including the Deep Ritz Method [79], the Deep Galerkin method [194],
and the Physics Informed Neural Networks (PINNs) [172]. The common way is to
approximate the solution of a PDE by a deep neural network, which is trained by
minimizing a loss function incorporating the equation itself and the initial/boundary
conditions. Though these methods have been a popular topic during the past five
years, there is growing concern about whether these methods are indeed practical,
because only a few efforts were made to analyze these methods rigorously. We aim
to address the following questions.
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Can we provide theoretical numerical analysis of deep learning methods for PDEs?

Can we develop deep learning methods for integral equations?

Apart from some modern methods for integral equations, answering this question
may help to solve PDEs more efficiently in light of the integral equation method
for PDEs. In such a case, the considered PDE can be reformulated as an integral
equation by some integral transformations. Numerically, there is a potential benefit
for the integral equation method: differential operators are numerically unstable
due to unbounded norms of their inverse, but integral operators occurring in integral
equations are usually compact. Both questions help the development of deep learning
methods for high-dimensional numerical analysis.

Deep learning tasks in various manifolds. Real-world applications may be
modeled on various regions. For example, geomathematicians may always consider
spherical problems, since the Earth’s potato shape can be mapped to a 2-sphere
by an appropriate smooth mapping. However, most of deep learning theory focuses
on target functions defined on a cube [0, 1]d, and transferring theoretical results
from Euclidean spaces to manifolds is not a direct extension. As mentioned in, e.g.,
[27, 188], such a transfer can be achieved by utilizing the chart–atlas definition of
manifolds, namely, finding neural network approximation on each chart and then
summing up estimates on each chart. The derived error bound, which is a sum of
error bounds on each chart, relies on the size of the atlas, which depends on the
dimension (cf. [188, Equation (34)]). Moreover, manifolds may have their intrinsic
properties and the mapping to a union of Euclidean charts may not well maintain
these properties. Thus the final specific question we aim to tackle in the future is
the following.

Can we analyze the performance of deep learning and its applications to natural
sciences with problems defined on manifolds without using the chart–atlas

definition?

If we do not introduce the atlas size into the error bound, we shall make use
of some developed tools on specific manifolds. For example, our spectral method in
Chapter 5 is an intrinsic method on the sphere, and spherical approximation theory
and neural networks with spherical inputs can be related.
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Appendix A

The Rhythms of History

“I consider it immoral to discuss a topic without connecting to predecessors.”

Lloyd N. Trefethen FRS, Ten themes of how I do research, 2006

Motivating and supporting my research presented in this thesis, a list of signif-
icant achievements in approximation theory, numerical analysis, and computational
harmonic analysis is summarized in the following chronology, based on their publi-
cation dates.

1914 Gronwall examined the uniform norm of the L2 orthogonal projection
operator on S2 [103], 103

1929 Filon developed a method for the numerical quadrature of oscillatory
integrals, which is now referred to as Filon quadrature [90], 38

1937 Marcinkiewicz and Zygmund established multiple inequalities linking the
accurate integrals of trigonometrical polynomials and their quadrature
formulae [143], 6, 20, 40, 66, 100

1939 Szegő published his masterpiece [210] of orthogonal polynomials, 51
1960 Clenshaw and Curtis investigated a quadrature formula in Chebyshev

points and experimentally observed an unexpected accuracy comparable
to Gauss quadrature [62], 27

1966 Müller published his classic monograph [151] on spherical harmonics, 69
1975 Glowinski and Marrocco proposed an algorithm, named ALG2, for the

numerical solution of various problems from mechanics, physics, and
differential geometry, which is now commonly known as the Alternating
Direction Method of Multipliers (ADMM) [99], 150, 208

1977 Delsarte, Goethals, and Seidel introduced the concept of spherical t-
designs [69], 31, 56, 72, 98

1978 Sloan and Smith proposed the product-integration method for integrand
containing an absolutely integrable kernel [198], 38
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1979 Allen and Cahn introduced an equation to describe the process of phase
separation in iron alloys [5], 7, 94

1979 Bannai and Damerell showed tight spherical t-designs exist only for a
few small values of t when t is even [17], 72

1980 Bannai and Damerell extended their 1979 results to odd t [18], 72
1984 Seymour and Zaslavsky pointed out that a spherical t-design always ex-

ists if there are sufficient points [187], 72
1988 Sloan proposed the qualocation method, aiming to achieve the theoretical

benefits of the Galerkin method at a computational cost comparable to
the collocation method [195], 111

1991 Du and Nicolaides investigated fully discrete schemes for the Cahn–
Hilliard equation that preserve the energy law at the discrete level [78],
95

1992 Rudin, Osher, and Fatemi introduced the total variation (TV) model for
image denoising [182], 161

1993 Elliott and Stuart proposed the convex splitting method for gradient
flows, getting rid of the expense of solving nonconvex problems [80], 95

1995 Sloan invented hyperinterpolation [196], 5, 98
1997 Tao and An proposed the DCA for solving difference-of-convex (DC)

optimization problems [212], 147, 206
2001 Mhaskar, Narcowich, and Ward investigated the Marcinkiewicz–

Zygmund inequality on the sphere [146], 6, 20, 40, 66, 100
2006 The field of compressed sensing was initialized by Candès, Romberg and

Tao [41] and Donoho [74] in the same year, 131
2007 Brauchart and Hesse analyzed the convergence rate of integrating f ∈

Hs(Sd) using spherical t-designs for all s > d/2 and d ≥ 2 [34], 73
2008 Trefethen argued by entering the complex plane that for most functions,

the Clenshaw–Curtis and Gauss quadrature rules have comparable ac-
curacy [220], 29

2011 Filbir and Mhaskar investigated the Marcinkiewicz–Zygmund inequality
on compact manifolds [89], 6, 20, 40, 66, 100

2012 He and Yuan obtained the sublinear convergence rate of the Douglas–
Rachford splitting method (equivalent to the ADMM) for convex pro-
grams [107], 150

2013 Bondarenko, Radchenko and Viazovska resolved the long-standing open
problem that for each m ≥ ctd with some positive but unknown constant
c > 0, there exists a spherical t-design of m points on Sd [28], 72

2013 Needell and Ward established the compressed imaging theory for the TV
minimization model [157], 11
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2014 Brauchart, Saff, Sloan, and Womersley introduced the concept of QMC
designs [35], 73

2022 Trefethen commented on the exactness of quadrature formulae, aligning
with the trend of interest in the numerical analysis community that the
quadrature exactness should be re-accessed [222], 16
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