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Polynomial approximation

+ For f ∈ C (Ω), find an approximant p = ∑dn
`=1 c`p` ∈ Pn:

q Ω ⊂ Rd : bounded, closed subset of Rd or compact manifold with
finite measure w.r.t a given (positive) measure dω, i.e.,

∫
Ω dω = V .

q Pn: space of polynomials of degree ≤ n over Ω
q {p1, p2, . . . , pdn}: orthonormal basis of Pn with dim. dn := dim Pn

+ Famous Methods:
q Polynomial interpolation: given points {xj}dnj=1, find p such that

f (xj ) = p(xj ) =
dn

∑
`=1

c`p`(xj ), j = 1, . . . , dn

- complicated and even problematic in multivariate cases
q Orthogonal projection: defined as

Pnf :=
dn

∑
`=1

〈f , p`〉p`,

where 〈f , g〉 =
∫

Ω fgdω
- non-implementable on computersHao-Ning Wu (HKU) 1/18



Hyperinterpolation

Ian H. Sloan (in the early 1990s): Does the interpolation of functions on
S1 have properties as good as orthogonal projection?

- Sloan (’95 JAT)

q on S1: Yes.

q on Sd (d ≥ 2) and most high-dim regions: remaining Problematic
to this day!

q Using more points than interpolation? → hyperinterpolation

The hyperinterpolation of f ∈ C (Ω) onto Pn is defined as

Lnf :=
dn

∑
`=1

〈f , p`〉mp`,

where 〈f , g〉m :=
m

∑
j=1

wj f (xj )g(xj ) with all wj > 0.
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q Lnf is a discretized version of the orthogonal projection Pnf .

q Lnf reduces to interpolation if the quadrature rule is dn-point with
exactness degree exceeding 2n.

The quadrature rule
m

∑
j=1

wjg(xj )≈
∫

Ω
gdω is said to have exactness

degree 2n if
m

∑
j=1

wjg(xj ) =
∫

Ω
gdω ∀g ∈ P2n.

Caveat: Such quadrature rules (dn-point with exactness degree at least
2n) only exist on a few low-dimensional Ω, such as [−1, 1], [−1, 1]2, and
S1; and they are not available on [−1, 1]d (d ≥ 3) or Sd (d ≥ 2).

In higher dimensions, more quadrature points (than dn) are necessary for
exactness degree 2n
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Theorem (Sloan 1995)

Assume the quadrature rule has exactness degree 2n. Then for any
f ∈ C (Ω), its hyperinterpolant Lnf satisfies:

q Lnχ = χ for any χ ∈ Pn;

q ‖Lnf ‖2 ≤ V 1/2‖f ‖∞;

q ‖Lnf − f ‖2 ≤ 2V 1/2En(f ).

Here V = |Ω| and En(f ) := inf
χ∈Pn

‖f − χ‖∞.

å The interpolation of functions on S1 has properties as good as
orthogonal projection X
å That on S2 or higher dimensional spheres ?

The theory relies on quadrature exactness of degree at least 2n:

m

∑
j=1

wjg(xj )=
∫

Ω
gdω ∀g ∈ P2n.
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On quadrature exactness

x

y

Chebyshev points

Clenshaw–Curtis quad (1960)
n+ 1 points → n exactness degree

x

y

Gauss–Chebyshev points

Gauss–Chebyshev quad (19th century)
n+ 1 points → 2n+ 1 exactness degree

- Trefethen (’08 SIREV): entered the complex plane and demonstrated
for most functions, the Clenshaw–Curtis and Gauss quadrature rules have
comparable accuracy

- Trefethen (’22 SIREV): numerical integral is an analysis topic, while
quadrature exactness is an algebraic matter
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Our solution: Marcinkiewicz–Zygmund

- Marcinkiewicz and Zygmund (1937): There exists η ∈ [0, 1) such that

(1− η)
∫

Ω
χ2dωd ≤

m

∑
j=1

wjχ(xj )
2 ≤ (1 + η)

∫
Ω

χ2dωd ∀χ ∈ Pn.

I MZ on spheres: Mhaskar, Narcowich, & Ward (2001)

I MZ on compact manifolds: Filbir & Mhaskar (2011)

I MZ on multivariate domains other than compact manifolds (balls,
polytopes, cones, spherical sectors, etc.): De Marchi & Kroó (2018)

In particular, [hXm
:= maxx∈Sd−1 minxj∈Xm

dist(x , xj )]

I MZ on compact manifolds holds if n . η/hXm
, where hXm

is the
mesh norm of {xj}mj=1 ⇒ Scattered data

I Le Gia and Mhaskar (2009): If {xj} are i.i.d drawn from the
distribution ωd , then there exists a constant c̄ := c̄(γ) such that
MZ holds on Sd with probability ≥ 1− c̄N−γ on the condition
m ≥ c̄Nd logN/η2 ⇒ Random data and learning theory

Hao-Ning Wu (HKU) 6/18



First-stage solution

Marcinkiewicz–Zygmund (MZ) property (equiv.): ∃ η ∈ [0, 1) such
that

∣∣∣∣∣ m

∑
j=1

wjχ(xj )
2 −

∫
Ω

χ2dωd

∣∣∣∣∣ ≤ η
∫

Ω
χ2dωd ∀χ ∈ Pn.

What if relaxing 2n to, say, n+ k with 0 < k ≤ n?

Theorem (An and W. 2022)

Assume the quadrature rule has exactness degree n+ k and satis-
fies the MZ property. Then for any f ∈ C (Ω):

q Lnχ = χ for any χ ∈ Pk ;

q ‖Lnf ‖2 ≤
V 1/2

√
1− η

‖f ‖∞;

q ‖Lnf − f ‖2 ≤
(

1√
1− η

+ 1

)
V 1/2Ek (f ).

Remark: If the quadrature rule has exactness degree 2n (or k = n), then
η = 0 =⇒ Sloan’s original results.
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Why Marcinkiewicz–Zygmund?

q (with exactness degree of 2n) The key observation for the stability of
Lnf :

‖Lnf ‖2
2 + 〈f −Lnf , f −Lnf 〉m︸ ︷︷ ︸

≥0 (all wj>0)

= 〈f , f 〉m =
m

∑
j=1

wj f (xj )
2≤ V ‖f ‖2

∞

q (with exactness degree being n+ k , 0 < k ≤ n) We can only derive:

‖Lnf ‖2
2 + 〈f −Lnf , f −Lnf 〉m + σm,n,f︸ ︷︷ ︸

≥0?

= 〈f , f 〉m;

where σn,k,f = 〈Lnf −Lk f ,Lnf −Lk f 〉 − 〈Lnf −Lk f ,Lnf −Lk f 〉m.

å Note that Lnf −Lk f ∈ Pn, the MZ property implies

|σn,k,f | ≤ η〈Lnf −Lk f ,Lnf −Lk f 〉 ≤ η‖Lnf ‖2
2.

Hao-Ning Wu (HKU) 8/18



Numerical results on S2

Let p` be spherical harmonics on S2 with dn = dim Pn = (n+ 1)2

Definition (Delsarte, Goethals, and Seidel 1977)

A point set {x1, . . . , xm} ⊂ S2 is said to be a spherical t-design
if it satisfies

1

m

m

∑
j=1

g(xj ) =
1

4π

∫
S2

gdω ∀g ∈ Pt .

Figure: Spherical 50- and 30-designs, generated by the optimization method proposed
by An, Chen, Sloan, and Womersley (2010).
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Figure: Hyperinterpolants LS
25f and L25f of a Wendland function, constructed by

spherical t-designs with t = 50 (upper row) and 30 (lower row).
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Second-stage solution

What if totally discarding quadrature exactness?

A case study on spheres: The “polynomial” space Pn(Sd ) is the span of
spherical harmonics {Y`,k : ` = 0, 1, . . . , n, k = 1, 2, . . . ,Z (d , `)};
Pn(Sd ) is also a reproducing kernel Hilbert space with the
reproducing kernel

Gn(x , y) =
n

∑
`=0

Z (d ,`)

∑
k=1

Y`,k (x)Y`,k (y)

in the sense that 〈χ,G (·, x)〉 = χ(x) for all χ ∈ Pn(Sd ).

For hyperinterpolation (denoted by Unf w/o quadrature exactness):

Unf (x) =
n

∑
`=0

Z (d ,`)

∑
k=1

(
m

∑
j=1

wj f (xj )Y`,k (xj )

)
Y`,k (x) =

m

∑
j=1

wj f (xj )Gn(x , xj )

〈Unχ, χ〉 =
〈

∑m
j=1 wjχ (xj )Gn (x , xj ) , χ(x)

〉
= ∑m

j=1 wjχ (xj )
2
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Theorem (An and W. 2024)

Assume the quadrature rule satisfies the MZ property. Then for
any f ∈ C (Ω):

q ‖Unf ‖L2 ≤
√

1 + η

(
m

∑
j=1

wj

)1/2

‖f ‖∞;

q ‖Unf − f ‖L2 ≤

√1 + η

(
m

∑
j=1

wj

)1/2

+ |Sd |1/2

En(f )

+
√

η2 + 4η‖χ∗‖L2 ,

where Un stands for hyperinterpolation without quadrature exact-
ness.

Note: If the quadrature rule has exactness degree at least 1, then

m

∑
j=1

wj =
∫

Sd
1dωd = |Sd |.
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Error bound investigated numerically

q The error bound is controlled by n and m

q Le Gia & Mhaskar (random points)

⇒ η has a lower bound order
√

n2 log n/m
⇒
√

η2 + 4η‖χ∗‖L2 has a lower bound of order m−1/4 w.r.t. m,
and it increases as n enlarges

Figure: Approximating f1(x) = (x1 + x2 + x3)
2 ∈ P6(S

2).
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q f2(x1, x2, x3) := |x1 + x2 + x3|+ sin2(1 + |x1 + x2 + x3|)
q The Franke function for the sphere

f3(x1, x2, x3) :=0.75 exp(−((9x1 − 2)2)/4− ((9x2 − 2)2)/4− ((9x3 − 2)2)/4)

+0.75 exp(−((9x1 + 1)2)/49− ((9x2 + 1))/10− ((9x3 + 1))/10)

+0.5 exp(−((9x1 − 7)2)/4− ((9x2 − 3)2)/4− ((9x3 − 5)2)/4)

−0.2 exp(−((9x1 − 4)2)− ((9x2 − 7)2)− ((9x3 − 5)2)) ∈ C∞(S2)
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Figure: Approximating f2 and f3.
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Applications to nonlinear partial differential equations (PDEs)

To compute smooth solutions of semi-linear PDEs on Sd−1 ⊂ Rd with
dimension d ≥ 3 of the form

ut = Lu +N(u), u(0, x) = u0(x),

where L is a constant-coefficient linear differential operator, and N is a
constant-coefficient nonlinear differential (or non-differential) operator of
lower order.

Example: Allen–Cahn equation

ut = ν2∆u − F ′(u), u(0, x) = u0(x),

where F ′(u) = f (u) = u3 − u.
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- W. & Yuan (23’ Preprint): Our idea in a nutshell: linearizing the
nonlinear part N(u) by hyperinterpolation:un+1 − un

τ
= ν2∆un+1 −LN

(
(un)3 − un

)
, n ≥ 0,

u0 = LNu0

where τ > 0 is the time step.

For each time iteration: using the property −∆Y`,k = `(`+ d − 2)Y`,k
of spherical Laplace–Beltrami operator, only solving a linear system

We have analyzed the L∞ stability and maximum principle for the
scheme. In our analysis, we assume η = cN−s for s > (d − 1)/2 and
some constant c > 0.

I Scattered data: MZ holds if N . η/hXm

I Random data: MZ holds with probability exceeding 1− c̄N−γ on
the condition Nd−1 logN . η2m
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Figure: Numerical solution to the Allen–Cahn equation with ν = 0.1 and initial
condition u(0, x , y , z) = cos(cosh(5xz)− 10y ) using our scheme with τ = 0.5,
N = 15, and different quadrature points. From top row to bottom row:
m = b120N2 lnNc = 73, 117 random points; m = (2N + 1)2 = 961 equal area points;
and m = 961 spherical 2N-designs.
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Happy Birthday, Professor Wong!


