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Polynomial approximation

w For f€ C(Q)), find an approximant p = Z‘Z;l cope € Py
0 QO ¢ R? bounded, closed subset of R or compact manifold with
finite measure w.r.t a given (positive) measure dw, i.e., [dw = V.
Q IP,,: space of polynomials of degree < n over Q)
Q {p1,p2,...,Pd,}: orthonormal basis of P, with dim. d, := dimPP,

= Famous Methods:
QO Polynomial interpolation: given points {xj}j.l;l, find p such that

fx;) = p(x)) ZCgpng j=1,...,d,

- complicated and even problematic in multivariate cases
O Orthogonal projection: defined as

dn

Paf:= Y (f pe)pe

/=1

where (f, g) = fQ fgdw
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Hyperinterpolation

lan H. Sloan (in the early 1990s): Does the interpolation of functions on
S! have properties as good as orthogonal projection?
# Sloan ('95 JAT)

0 on S': Ves.

Q on S9 (d > 2) and most high-dim regions: remaining Problematic
to this day!

Q Using more points than interpolation? — hyperinterpolation

~

The hyperinterpolation of f€ C(Q)) onto P, is defined as

dn

Lnpf:= Z <f, P€>mPK,
(=1

m
where (f, g)m 1= L w;f(x;)g(x;) with all w; > 0.
=
S /
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Q L,fis a discretized version of the orthogonal projection P,f.

Q L,freduces to interpolation if the quadrature rule is d,-point with
exactness degree exceeding 2n.

m
The quadrature rule ) wjg(xj)%/ gdw is said to have exactness
1 o

degree 2n if

m
w;g(x)) :/ gdw Vge Py,
J=1 0

Caveat: Such quadrature rules (d,-point with exactness degree at least
2n) only exist on a few low-dimensional Q, such as [—1,1], [—1, 1]2, and
S'; and they are not available on [—1,1]9 (d > 3) or S (d > 2).

In higher dimensions, more quadrature points (than d,) are necessary for
exactness degree 2n
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Theorem (Sloan '95 JAT)

Assume the quadrature rule has exactness degree 2n. Then for any
fe C(Q), its hyperinterpolant L,f satisfies:

Q Lyx = x forany x € Py;
Q [|Lafll2 < V2| flloo;

S Q ||Laf—fll2 < 2VA/2E,(). )

Here V= |Q) and E,(f) := inf |[f— x/|co-
xelP,

5= The interpolation of functions on S! has properties as good as
orthogonal projection v/
& That on S? or higher dimensional spheres ?

Caveat: The theorem relies on quad. exactness of degree at least 2n:

m
w;g(xj)= /Q gdw Vg€ Py,
=1

J
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On quadrature exactness

y y

Chebyshev points Galiss—Chebyshev points

X
Clenshaw—Curtis quad (1960) Gauss—Chebyshev quad (19th century)
n—+1 points — n exactness degree n+1 points — 2n+ 1 exactness degree

#2 Trefethen (08 SIREV): entered the complex plane and demonstrated
for most functions, the Clenshaw—Curtis and Gauss quadrature rules have
comparable accuracy

#» Trefethen (22 SIREV): numerical integral is an analysis topic, while
quadrature exactness is an algebraic matter
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Our solution: Marcinkiewicz—Zygmund

#> Marcinkiewicz and Zygmund (1937): There exists 17 € [0, 1) such that
m

(1) [ s < £ wix()? < (1) [ 12w Ve Py
=

» MZ on spheres: Mhaskar, Narcowich, & Ward (2001)
» MZ on compact manifolds: Filbir & Mhaskar (2011)

» MZ on multivariate domains other than compact manifolds (balls,
polytopes, cones, spherical sectors, etc.): De Marchi & Kroé (2018)

In particular, [hx,, := max,cga-1 Minye x,, dist(x, x;)]
» MZ on compact manifolds holds if n < #/hy, , where hy, is the
mesh norm of {x;}T; = Scattered data

» Le Gia and Mhaskar (2009): If {x;} are i.i.d drawn from the
distribution wy, then there exists a constant ¢ := ¢(y) such that
MZ holds on S¢ with probability > 1 — @N~7 on the condition
m > tN9log N/772 = Random data and learning theory
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First-stage solution

Marcinkiewicz-Zygmund (MZ) property: 3 77 € [0,1) such that

m
Y wix(x)? —/ Xdwy| < 17/ X’dwg Vx € P,
=1 o 0

What if relaxing 2n to, say, n+ k with 0 < k < n?
Theorem (An and W. '22 BIT)

Assume the quadrature rule has exactness degree n+ k and satis-
fies the MZ property. Then for any fe C(Q):
Q Lpx = x for any x € Py;
V1/2
[1flloo:

Ve

1
Q ||Laf— f]|2§< - +1> VI/2EL(f).
Vi—1n
N\ J

Remark: If the quadrature rule has exactness degree 2n (or k = n), then
17 =0 == Sloan’s original results.

u ||1317f]|2 f;

7/33
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Why Marcinkiewicz—Zygmund?

QO (with exactness degree of 2n) The key observation for the stability:

m
ILafl3 + {f= Laf, f= Lafim = (fhm = ) wif(x)*< VI,
j=1

>0 (all w;>0)

QO (with exactness degree being n+ k, 0 < k < n) We can only derive:

H‘Can% + <f_ Lnf, f— Lnf)m +Um,n,f: <f, f>m;

>0?

where On,k,f = <£nf— Ekf, [,nf— Ekf> — <£,-,f— [,kf, [:nf— Lk")m-

w Note that L,f— Lif € P, the MZ property implies
(Tnkotl < (Laf— Lif, Laf— Licf) < 7] LaflI3.
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Numerical results on G2

Let p; be spherical harmonics on S? with d, = dimPP, = (n+1)?
Definition (Delsarte, Goethals, and Seidel 1977)

A point set {xl, . ,Xm} C S2 is said to be a spherical t-design

if it satisfies

1
x-)zﬁ/szgdw Vg € Py

spherical 50-design: 2601 pts spherical 30-design: 961 pts

Figure: Spherical 50- and 30-designs, generated by the optimization method proposed
by An, Chen, Sloan, and Womersley (2010).
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Figure: Hyperinterpolants Lgsfand Losf of a Wendland function, constructed by

spherical t-designs with t = 50 (upper row) and 30 (lower row).
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Second-stage solution

What if totally discarding quadrature exactness?

A case study on spheres: The “polynomial” space P (Sd) is the span of
spherlcal harmonics {Y; x: £=0,1,..., n k=1,2,..., Z(d, 0)};

IP,(SY) is also a reproducing kernel Hilbert space with the
reproducing kernel

n Z(df
Xy):[gg x) Yy (y)

in the sense that (x, G(-, x)) = x(x) for all x € P,(S%).

For hyperinterpolation w/o quadrature exactness:

w;fx)) Gn(x, )
k=1 \j=1

n Z(dt
:eg Z ZWJ x) Ve, k(XJ)> Yik(x) =

I

(Lo x) = (Ea wix () Ga () x() ) = L wix (x9)°
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Theorem (An and W. '24 JoC)

Assume the quadrature rule satisfies the MZ property. Then for
any fe C(Q):

1/2
QLufliz € VIFT (-21 w,-> e
J:

m 1/2
Q [Laf= 1l < | V1t Z“’j) + S92 | En(f)
j=1

+ /12 + 4l X7 2

where L, stands for hyperinterpolation without quadrature exact-

\ ness. /

Note: If the quadrature rule has exactness degree at least 1, then

m d
E w; = ldwy = |59.
=1 J /Sd d | |
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Error bound investigated numerically

U The error bound is controlled by n and m
Q Le Gia & Mhaskar (random points)
= 1 has a lower bound order \/n?logn/m

= /12 + 45| x*|| 2 has a lower bound of order m™1/% w.r.t. m,
and it increases as n enlarges

Convergence of U, f1

error

0 0.5 1 1.5 2 2.5
number m of quad. points «10°

Figure: Approximating f;(x) = (x; + xo + x3)? € Pg(S?).
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Q fi(xi,x2,x3) == |x1 +x2 + x3| +sin?(1 + |x1 + x2 + x3])
O The Franke function for the sphere

o (xt, 50, 3) 0,75 exp(—((9x1 — 2)2) /4 — (9 — 2)2)/4 — (9% — 2)2)/4)
+0.75exp(—((9x1 +1)2)/49 — ((9x2 + 1)) /10 — ((9x3 + 1)) /10)
+0.5exp(—((9x1 — 7)2)/4 — (9% — 3)%) /4 — ((9x3 — 5)?)/4)
—0.2exp(—((9x1 — 4)%) — (9% — 7)%) — ((9x3 — 5)?)) € C°(S?)

. Convergence of U, fo . Convergence of U, f3
-=n=3 10 -=n=3
*n =06 *n =06
n=9 n=9
~“4-n=12 —“4-n=12
10° — 4 m-l/A4

error
error

0 0.5 1 15 2 0 0.5 1 1.5 2
number m of quad. points 105 number m of quad. points, o5

Figure: Approximating f; and f3 (the notation U, stands for hyperinterpolation,

as adopted in our publication).
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Applications to Fredholm integral equations of the second kind

= Consider the Fredholm integral equation of the second kind

p(x) = [, hllx=y)K(x y)g(y)deo(y) = f1x

on 82, where |x — y| := /2(1 — x- y) denotes the Euclidean distance
between points x and y on S

» The inhomogeneous term f, the kernel K, and the solution ¢ are
assumed to be continuous.
» The weight function h: (0,00) — R is allowed to be weakly

singular, i.e., his continuous for all x, y € S? with x # y, and there
exists positive constants M and « € (0, 2] such that

[h(|x = y))| < Mix—y*7%

to be strengthened to |A(|x — y|)| < M|x — y|(®=2)/2 for analysis.

P |t is assumed that the homogeneous equation has no non-trivial
solution; then classic Riesz theory = the inhomogeneous equation

has a unique solution continuously depending on f.
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Singular kernel, modified moments, and semi-analytical approach

= Numerically evaluating singular integrals is risky: as quadrature points
approach the singularity, the scheme becomes increasingly unstable.

= Funk—Hecke formula: Let g € L!(—1,1) and x € S?. Then

/52 g(x-y) Yo (y)dw(y) = peYok(x),
where
Uy = 27T /711 g(21/2(1 B t)l/z)Pg(t)dt,

and P,(t) is the standard Legendre polynomial of degree £.

1w Modified moments: Computing the singular part analytically

Ly Hx =) Yis(y)deo(y) = e Veu(),

where |x—y| := 1/2(1 —x-y) and

1
i = 271/ h(2Y2(1 — £)Y/2)Py(1)dt.
1
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1w Example 1: h(|x—y|) = |[x—y|” with =2 < v < 0. Then

__ V42 _K F(%)
pe =22 2>zr(£+%+2)

T'(x+ n)
I'(x)

with (x)p := for x > 0.

i Example 2: h(|x—y|) = log |x —y|. Then

Ho = 271/711 log(2Y/2(1 — £)Y/2)Py(t)dt| = n/ll log(2(1 — t)) Py(t)dt.

Numerically,

1
Ho = 7'(/ . log(2(1 —t))dt = (4log2 — 2),

1 o0 tk 14 1 1 B g
— *P = — —_ P :1 2 e o e
1y n/lkzl p o (t)dt nk;l k/71t 0 (t)dt, 2,

w Example 3: h(|x—y|) = |x—y|"t|x+ y|"2 with =2 < vq,v, < 0.
Then

1
” :2(”1+V2)/2(27r)/1(1—t)V1/2(1+t)”2/2Pg(t)dt.
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Quadrature rule for the integral operator

For the integral operator [, h(|x — y|)K(x, y)¢(y)dw(y), we
approximate it as

[ = ) £0 (KCx )9l ey

n 2{+1

:/s (Ix—y]) <Z Y (KX )9 Yok) m Ym()’)) dw(y)

(=0 k=1
n 2(+1

(f hix- y|>ve,k<y>dw<y>) (K% )9. Y1)
1

>

(=0

|
-

(=0 k

20+1
w (LT (LA Yo m(xj)> K(x )9 (s)

I
3 T3

L W;(x)K(x, x;) (),

-
Il
—
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Two-stage numerical scheme for the integral equation

Let ¢, denotes the numerical solution, where the triple index
v := (m, n, ) encodes the Marcinkiewicz—Zygmund property.

9~ L WK )9 0) = 0. =1

1= First stage We set x = x;, j= 1,..., m, then numerically solves the
obtained system of linear equations

Py (xi) = Y Wilx) K(xi, X)) 9o (x5) = fx;), i=1,....m
=1
for the quantities ¢, (x;), j=1,..., m.

= Second stage The value of ¢, (t) at any t € S can be evaluated by
the direct usage of

m

P (t) = f(t) + ; W;i(t)K(t, x;) py (x)).
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Numerical analysis for the numerical scheme

Let
(Ag)(x) = [, (lx=y)K(x y)g()deo()
(Arg) ()= 1 WH(0K(x )0 3)
= For
¢ —Ap =

Riesz theory = (/— A)~!: C(S?) — C(S?) exists and is bounded v/
= For

Py —Aypy =1 and (I=A))(@y — @) = (A, —A)g ?

The existence of @, and the error bound of ||y — @||1~ depend on the
existence and boundedness of (/— A,)"! (7).
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The identity (/— A)~! = I+ (/— A) 1A suggests that
By =1+ (I-A)'A,
is an approximate inverse for / — A,. Note that
(I=A)By(I=Ay) =+ = (1= A) = (Ay — A)A,,
which is equivalent to
By(I—Ay) =1-5,,
where S := (I— A)"1(A, — A)A,. If we assume
11— ) (Ay — M)A, < 1,
Neumann series = (/— 57)*1 exists and is bounded by

1

I-5)7Y € ——.
H( ’Y) H 1— HS’YH

Then /| — A, is an injection. If we assume A, is compact, then

Fredholm alternative = (/— A,) ™! exists and

(I-A) L= (1-5,)"!B,.
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NG

Assume that operators A, are compact and 7y € I' such that the
sequence {A, } satisfies

[(1=A) " A, — AA, || < 1,

Then the inverse operators (/— A,)~1: C(S?) — C(S?) exist and
are bounded by

L4 [[(1=A) T A
1—|I(1— A)fl(Av —A)A I

11— A7 <

For solutions of the equations

¢p—Ap=1 and @y —A,p, =T
we have the error estimate

1+[[(/—A)" A
— o < A, —A oo,
||§07 q)HL = 1= ||(/—A)71(A/Y—A)A7H H( Y )q)HL

J
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» Applying previous approximation results of hyperinterpolation, we
can verify A, is compact and ||(/— A)"}(A, — A)A,| < L.

> We need h(21/2(1 — t)¥/2) € L1(—1,1) N L%(—1,1).
Theorem (An & W. '24)

Let v = (m, n,n7) € T with sufficiently large n and sufficiently small
1. Then

[yl < Co(m, n, ) || ]|,

where Ci;(m, n, ) > 0 is some constant decreasing as n grows or
1 decreases. Moreover, there exists xg € 52 such that

19y — ¢llie < Ca(m, m.1) (En<K<xo, o) + /2 +4n|x*|Lz) ,

where Cy(m, n,77) > 0 is some constant decreasing as n grows or
1 decreases, and x* stands for the best approximation polynomial
of K(xo,-)¢(+) in Pp.

)

Hao-Ning Wu (UGA)
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Numerical experiments for the integral equation solver

1 Toy example setting: For various singular kernel h and continuous
kernel K, let ¢ =1 = f=? = Solve for ¢, and compare with 1.

= Point sets {x;}7; for the first stage: We investigate four kinds of
point distributions on sphere:

O Spherical t-designs;

Q Minimal energy points: a set of points {xj}j";l C G2 that minimizes
the Coulomb energy
i 1
ij=1 ||X,' - Xj||2y
0 Fekete points: a set of points that maximizes the determinant
det (pi (XJ))%’ZI for polynomial interpolation.
O Equal area points.

= Validation points for the second stage: 5,000 uniformly distributed
points on S2.
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Example 1: h =1 with

WW—M<

We let K(x,y) =sin(10|x —y|), thus

1
fix,y) =1— 27'(/ sin (10\/2(1 - t)> dt =~ 1.455449001125579.
-1
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spherical t-designs | |
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minimal energy points

absolute error

Figure: Numerical solutions with n = 20 and m = (2n+1)2.
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n = 20 with varying m = (t + 1) varying n with m = ([1.2n] + 1)*

\/\,\/N
\,\/.« \"*/\“\
NN i
«
—
N A :
= 102
107, 10
s » 3 % = s = = 3 4
t degree n. of hyperinterpolants

Figure: Non-singular h =1 and oscillatory K(x, y) = sin(10|x — y|): Uniform
errors with different n and m.
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Example 2: h(x,y) = |x— y|~%5 with modified moments (and hence
Wj(x)) analytically evaluated. We let K(x, y) = cos(10|x — y|), thus

flxy)=1-— 27'(/_11 ( 2(1— t)) cos (10@) dt

~ 0.303738699125466.

-0.5

[osssssassores.

spherical t-designs iinimal energy points | ] o5 Fekete points equal area points
105 1025
ossossssssorrs o
104 102
osssssssesor?
105
0.9999998890765. oz 1015
0.999999889076 ! 1 101
ossossseesorss f o oo
o ssssssoesors
0.99 0.96 !
ossosssansores
oo osss
<107 x10°
M M [Fo08 abs mn
absolute error - absolute error " absolute error absolute error oas
or
L0225 “ ooes
os
10265 @
0.05 0.02
1026 0
1108235 g 004 0015
110923 B 003
oot
1105225 A o2
iomz A oor oos
L3215

Figure: Numerical solutions with n = 20 and m = (2n+1)2.
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n = 20 with varying m = (t + 1) varying n with m = ([1.2n] + 1)*

) 3 E}
t degree n of hyperinterpolants

Figure: Singular h(x,y) = |x — y|7%> and oscillatory K(x, y) = cos(10|x — y|):
Uniform errors with different n and m.
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Example 3: h(x,y) = log|x — y| with modified moments (and hence
W;(x)) stably evaluated. We let K =1 and

f(x,y) 51—271/11Iog( 2(1—t)> dt=1— rt(4log2 — 2).

00000001 o ‘ - .
spherical t-designs 1 ononoonps Minimal energy points | | o Fekete points Loons equal area points o
1000000006
'
1000000004 N ooz 1001
060
1000000002 , oo
' =
.999999098 05098 ' 007
0 50999009 — 059
0005
0095
0 909900094 e
0 99999092
09094 L 0004
o 99999909
<10 0 104 0
M ml me m
absolute error .. absolute error N absolute error absolute error A
®
24 B 1 g
12
22 4+ n
0
* 2 g s
8 2 © 2
n
15 s X ;

Figure: Numerical solutions n = 5 and m = (2n+1)2.
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n =5 with varying m = (t +1)* varying n with m = (|1.2n] + 1)*

uniform error

uniform

10t 100

Py 3 4 5 6 7 8 9 10 n 12 0y 3 4 5 6 7 8 9 10
t degree n of hyperinterpolants

Figure: Singular h(x, y) = log|x — y| and non-oscillatory K = 1: Uniform errors
with different n and m.
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Example 4: h(x y) = |x — y| %%|x+ y| =% with modified moments
(and hence Wj(x)) stably evaluated. We let K(x, y) = sin(10|x — y|) and

fixy) =1-2n /_11 (\/2(1 — 0201+ t)) i (10\/2(174)) dt

~ 0.011007492841040.

spherical t-designs [l

Hao-Ning Wu (UGA)
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Figure: Numerical solutions with n = 20 and m = (2n+1)2.
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uniform error

n = 20 with varying m = (t + 1)*

"
—e—spherical t-designs
e inimal cnergy points
i Fekete points
equal area points
10°,
\\_,,A
. Nty Al
102
i » » %

uniform error

varying n with m = ([1.2n] + 1)’

—a—Fekete points

~o—spherical t-designs
- minimal energy points|

\./\\H /\k\\

\/\/A/\ equal area points

N

) 5 EJ
degree n of hyperinterpolants

Figure: Singular h(x,y) = |x— y|7%%|x 4 y|7%5 and oscillatory
K(x,y) = sin(10|x — y|): Uniform errors with different n and m.
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Thanks for your attention.

Photo taken from Grass Island/Tap Mun, Hong Kong.



