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Polynomial approximation
+ For f ∈ C(Ω), find an approximant p = ∑dn

ℓ=1 cℓpℓ ∈ Pn:
q Ω ⊂ Rd: bounded, closed subset of Rd or compact manifold with

finite measure w.r.t a given (positive) measure dω, i.e.,
∫

Ω dω = V.
q Pn: space of polynomials of degree ≤ n over Ω
q {p1, p2, . . . , pdn}: orthonormal basis of Pn with dim. dn := dimPn

+ Famous Methods:
q Polynomial interpolation: given points {xj}dn

j=1, find p such that

f(xj) = p(xj) =
dn

∑
ℓ=1

cℓpℓ(xj), j = 1, . . . , dn

- complicated and even problematic in multivariate cases
q Orthogonal projection: defined as

Pnf :=
dn

∑
ℓ=1

⟨f, pℓ⟩pℓ,

where ⟨f, g⟩ =
∫

Ω fgdω
- non-implementable on computersHao-Ning Wu (UGA) 1/33



Hyperinterpolation

Ian H. Sloan (in the early 1990s): Does the interpolation of functions on
S1 have properties as good as orthogonal projection?

- Sloan (’95 JAT)
q on S1: Yes.
q on Sd (d ≥ 2) and most high-dim regions: remaining Problematic

to this day!
q Using more points than interpolation? → hyperinterpolation

The hyperinterpolation of f ∈ C(Ω) onto Pn is defined as

Lnf :=
dn

∑
ℓ=1

⟨f, pℓ⟩mpℓ,

where ⟨f, g⟩m :=
m
∑

j=1
wjf(xj)g(xj) with all wj > 0.
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q Lnf is a discretized version of the orthogonal projection Pnf.
q Lnf reduces to interpolation if the quadrature rule is dn-point with

exactness degree exceeding 2n.

The quadrature rule
m
∑

j=1
wjg(xj)≈

∫
Ω

gdω is said to have exactness

degree 2n if
m
∑
j=1

wjg(xj) =
∫

Ω
gdω ∀g ∈ P2n.

Caveat: Such quadrature rules (dn-point with exactness degree at least
2n) only exist on a few low-dimensional Ω, such as [−1, 1], [−1, 1]2, and
S1; and they are not available on [−1, 1]d (d ≥ 3) or Sd (d ≥ 2).

In higher dimensions, more quadrature points (than dn) are necessary for
exactness degree 2n
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Theorem (Sloan ’95 JAT)

Assume the quadrature rule has exactness degree 2n. Then for any
f ∈ C(Ω), its hyperinterpolant Lnf satisfies:

q Lnχ = χ for any χ ∈ Pn;
q ∥Lnf∥2 ≤ V1/2∥f∥∞;
q ∥Lnf − f∥2 ≤ 2V1/2En(f).

Here V = |Ω| and En(f) := inf
χ∈Pn

∥f − χ∥∞.

+ The interpolation of functions on S1 has properties as good as
orthogonal projection ✓
+ That on S2 or higher dimensional spheres ?

Caveat: The theorem relies on quad. exactness of degree at least 2n:
m
∑
j=1

wjg(xj)=
∫

Ω
gdω ∀g ∈ P2n.
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On quadrature exactness

x

y
Chebyshev points

Clenshaw–Curtis quad (1960)
n + 1 points → n exactness degree

x

y
Gauss–Chebyshev points

Gauss–Chebyshev quad (19th century)
n + 1 points → 2n + 1 exactness degree

- Trefethen (’08 SIREV): entered the complex plane and demonstrated
for most functions, the Clenshaw–Curtis and Gauss quadrature rules have
comparable accuracy

- Trefethen (’22 SIREV): numerical integral is an analysis topic, while
quadrature exactness is an algebraic matter
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Our solution: Marcinkiewicz–Zygmund

- Marcinkiewicz and Zygmund (1937): There exists η ∈ [0, 1) such that

(1 − η)
∫

Ω
χ2dωd ≤

m
∑

j=1
wjχ(xj)2 ≤ (1 + η)

∫
Ω

χ2dωd ∀χ ∈ Pn.

▶ MZ on spheres: Mhaskar, Narcowich, & Ward (2001)
▶ MZ on compact manifolds: Filbir & Mhaskar (2011)
▶ MZ on multivariate domains other than compact manifolds (balls,

polytopes, cones, spherical sectors, etc.): De Marchi & Kroó (2018)

In particular, [hXm := maxx∈Sd−1 minxj∈Xm dist(x, xj)]
▶ MZ on compact manifolds holds if n ≲ η/hXm , where hXm is the

mesh norm of {xj}m
j=1 ⇒ Scattered data

▶ Le Gia and Mhaskar (2009): If {xj} are i.i.d drawn from the
distribution ωd, then there exists a constant c̄ := c̄(γ) such that
MZ holds on Sd with probability ≥ 1 − c̄N−γ on the condition
m ≥ c̄Nd logN/η2 ⇒ Random data and learning theory
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First-stage solution

Marcinkiewicz–Zygmund (MZ) property: ∃ η ∈ [0, 1) such that∣∣∣∣∣ m
∑
j=1

wjχ(xj)
2 −

∫
Ω

χ2dωd

∣∣∣∣∣ ≤ η
∫

Ω
χ2dωd ∀χ ∈ Pn.

What if relaxing 2n to, say, n + k with 0 < k ≤ n?

Theorem (An and W. ’22 BIT)

Assume the quadrature rule has exactness degree n + k and satis-
fies the MZ property. Then for any f ∈ C(Ω):

q Lnχ = χ for any χ ∈ Pk;

q ∥Lnf∥2 ≤ V1/2√
1 − η

∥f∥∞;

q ∥Lnf − f∥2 ≤
(

1√
1 − η

+ 1
)

V1/2Ek(f).

Remark: If the quadrature rule has exactness degree 2n (or k = n), then
η = 0 =⇒ Sloan’s original results.Hao-Ning Wu (UGA) 7/33



Why Marcinkiewicz–Zygmund?

q (with exactness degree of 2n) The key observation for the stability:

∥Lnf∥2
2 + ⟨f −Lnf, f −Lnf⟩m︸ ︷︷ ︸

≥0 (all wj>0)

= ⟨f, f⟩m =
m
∑
j=1

wjf(xj)
2≤ V∥f∥2

∞

q (with exactness degree being n + k, 0 < k ≤ n) We can only derive:

∥Lnf∥2
2 + ⟨f −Lnf, f −Lnf⟩m + σm,n,f︸ ︷︷ ︸

≥0?

= ⟨f, f⟩m;

where σn,k,f = ⟨Lnf −Lkf,Lnf −Lkf⟩ − ⟨Lnf −Lkf,Lnf −Lkf⟩m.

å Note that Lnf −Lkf ∈ Pn, the MZ property implies
|σn,k,f| ≤ η⟨Lnf −Lkf,Lnf −Lkf⟩ ≤ η∥Lnf∥2

2.
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Numerical results on S2

Let pℓ be spherical harmonics on S2 with dn = dimPn = (n + 1)2

Definition (Delsarte, Goethals, and Seidel 1977)

A point set {x1, . . . , xm} ⊂ S2 is said to be a spherical t-design
if it satisfies

1
m

m
∑
j=1

g(xj) =
1

4π

∫
S2

gdω ∀g ∈ Pt.

Figure: Spherical 50- and 30-designs, generated by the optimization method proposed
by An, Chen, Sloan, and Womersley (2010).
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Figure: Hyperinterpolants LS
25f and L25f of a Wendland function, constructed by

spherical t-designs with t = 50 (upper row) and 30 (lower row).
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Second-stage solution

What if totally discarding quadrature exactness?

A case study on spheres: The “polynomial” space Pn(Sd) is the span of
spherical harmonics {Yℓ,k : ℓ = 0, 1, . . . , n, k = 1, 2, . . . ,Z(d, ℓ)};
Pn(Sd) is also a reproducing kernel Hilbert space with the
reproducing kernel

Gn(x, y) =
n
∑
ℓ=0

Z(d,ℓ)

∑
k=1

Yℓ,k(x)Yℓ,k(y)

in the sense that ⟨χ,G(·, x)⟩ = χ(x) for all χ ∈ Pn(Sd).
For hyperinterpolation w/o quadrature exactness:

Lnf(x) =
n
∑
ℓ=0

Z(d,ℓ)

∑
k=1

(
m
∑
j=1

wjf(xj)Yℓ,k(xj)

)
Yℓ,k(x) =

m
∑
j=1

wjf(xj)Gn(x, xj)

⟨Lnχ,χ⟩ =
〈

∑m
j=1 wjχ (xj)Gn (x, xj) ,χ(x)

〉
= ∑m

j=1 wjχ (xj)
2
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Theorem (An and W. ’24 JoC)

Assume the quadrature rule satisfies the MZ property. Then for
any f ∈ C(Ω):

q ∥Lnf∥L2 ≤
√

1 + η

(
m
∑

j=1
wj

)1/2

∥f∥∞;

q ∥Lnf − f∥L2 ≤

√1 + η

(
m
∑
j=1

wj

)1/2

+ |Sd|1/2

 En(f)

+
√

η2 + 4η∥χ∗∥L2 ,

where Ln stands for hyperinterpolation without quadrature exact-
ness.

Note: If the quadrature rule has exactness degree at least 1, then
m
∑
j=1

wj =
∫

Sd
1dωd = |Sd|.
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Error bound investigated numerically

q The error bound is controlled by n and m
q Le Gia & Mhaskar (random points)

⇒ η has a lower bound order
√

n2 log n/m
⇒
√

η2 + 4η∥χ∗∥L2 has a lower bound of order m−1/4 w.r.t. m,
and it increases as n enlarges

Figure: Approximating f1(x) = (x1 + x2 + x3)2 ∈ P6(S2).
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q f2(x1, x2, x3) := |x1 + x2 + x3|+ sin2(1 + |x1 + x2 + x3|)
q The Franke function for the sphere

f3(x1, x2, x3) :=0.75 exp(−((9x1 − 2)2)/4 − ((9x2 − 2)2)/4 − ((9x3 − 2)2)/4)
+0.75 exp(−((9x1 + 1)2)/49 − ((9x2 + 1))/10 − ((9x3 + 1))/10)
+0.5 exp(−((9x1 − 7)2)/4 − ((9x2 − 3)2)/4 − ((9x3 − 5)2)/4)
−0.2 exp(−((9x1 − 4)2)− ((9x2 − 7)2)− ((9x3 − 5)2)) ∈ C∞(S2)
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Figure: Approximating f2 and f3 (the notation Un stands for hyperinterpolation,
as adopted in our publication).
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Applications to Fredholm integral equations of the second kind

+ Consider the Fredholm integral equation of the second kind

φ(x)−
∫

S2
h(|x − y|)K(x, y)φ(y)dω(y) = f(x)

on S2, where |x − y| :=
√

2(1 − x · y) denotes the Euclidean distance
between points x and y on S2.
▶ The inhomogeneous term f, the kernel K, and the solution φ are

assumed to be continuous.
▶ The weight function h : (0,∞) → R is allowed to be weakly

singular, i.e., h is continuous for all x, y ∈ S2 with x ̸= y, and there
exists positive constants M and α ∈ (0, 2] such that

|h(|x − y|)| ≤ M|x − y|α−2;

to be strengthened to |h(|x − y|)| ≤ M|x − y|(α−2)/2 for analysis.
▶ It is assumed that the homogeneous equation has no non-trivial

solution; then classic Riesz theory ⇒ the inhomogeneous equation
has a unique solution continuously depending on f.
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Singular kernel, modified moments, and semi-analytical approach
+ Numerically evaluating singular integrals is risky: as quadrature points
approach the singularity, the scheme becomes increasingly unstable.

+ Funk–Hecke formula: Let g ∈ L1(−1, 1) and x ∈ S2. Then∫
S2

g(x · y)Yℓ,k(y)dω(y) = µℓYℓ,k(x),

where
µℓ := 2π

∫ 1

−1
g(21/2(1 − t)1/2)Pℓ(t)dt,

and Pℓ(t) is the standard Legendre polynomial of degree ℓ.

+ Modified moments: Computing the singular part analytically∫
S2

h(|x − y|)Yℓ,k(y)dω(y) = µℓYℓ,k(x),

where |x − y| :=
√

2(1 − x · y) and

µℓ := 2π
∫ 1

−1
h(21/2(1 − t)1/2)Pℓ(t)dt.
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+ Example 1: h(|x − y|) = |x − y|ν with −2 < ν < 0. Then

µℓ = 2ν+2π
(
−ν

2
)
ℓ

Γ
(

ν+2
2
)

Γ
(
ℓ+ ν

2 + 2
) with (x)n :=

Γ(x + n)
Γ(x) for x > 0.

+ Example 2: h(|x − y|) = log |x − y|. Then

µℓ = 2π
∫ 1

−1
log(21/2(1 − t)1/2)Pℓ(t)dt = π

∫ 1

−1
log(2(1 − t))Pℓ(t)dt.

Numerically,

µ0 = π
∫ 1

−1
log(2(1 − t))dt = π(4 log 2 − 2),

µℓ = −π
∫ 1

−1

∞

∑
k=1

tk

k Pℓ(t)dt = −π
ℓ

∑
k=1

1
k

∫ 1

−1
tkPℓ(t)dt, ℓ = 1, 2, . . . .

+ Example 3: h(|x − y|) = |x − y|ν1 |x + y|ν2 with −2 ≤ ν1, ν2 < 0.
Then

µℓ = 2(ν1+ν2)/2(2π)
∫ 1

−1
(1 − t)ν1/2(1 + t)ν2/2Pℓ(t)dt.
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Quadrature rule for the integral operator

For the integral operator
∫

S2 h(|x − y|)K(x, y)φ(y)dω(y), we
approximate it as∫

S2
h(|x − y|)Ln (K(x, y)φ(y))dω(y)

=
∫

S2
h(|x − y|)

(
n
∑
ℓ=0

2ℓ+1
∑
k=1

⟨K(x, ·)φ,Yℓ,k⟩m Yℓ,k(y)
)

dω(y)

=
n
∑
ℓ=0

2ℓ+1
∑
k=1

(∫
S2

h(|x − y|)Yℓ,k(y)dω(y)
)
⟨K(x, ·)φ,Yℓ,k⟩m

=
m
∑
j=1

wj

(
n
∑
ℓ=0

2ℓ+1
∑
k=1

(∫
S2

h(|x − y|)Yℓ,k(y)dω(y)
)

Yℓ,k(xj)

)
K(x, xj)φ(xj)

=:
m
∑
j=1

Wj(x)K(x, xj)φ(xj),
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Two-stage numerical scheme for the integral equation

Let φγ denotes the numerical solution, where the triple index
γ := (m, n, η) encodes the Marcinkiewicz–Zygmund property.

φγ(x)−
m
∑
j=1

Wj(x)K(x, xj)φγ(xj) = f(x), i = 1, . . . ,m

+ First stage We set x = xj, j = 1, . . . ,m, then numerically solves the
obtained system of linear equations

φγ(xi)−
m
∑
j=1

Wj(xi)K(xi, xj)φγ(xj) = f(xi), i = 1, . . . ,m

for the quantities φγ(xj), j = 1, . . . ,m.

+ Second stage The value of φγ(t) at any t ∈ S2 can be evaluated by
the direct usage of

φγ(t) = f(t) +
m
∑
j=1

Wj(t)K(t, xj)φγ(xj).
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Numerical analysis for the numerical scheme

Let

(Aφ)(x) :=
∫

S2
h(|x − y|)K(x, y)φ(y)dω(y)

(Aγ φ)(x) :=
m
∑
j=1

Wj(x)K(x, xj)φ(xj)

+ For
φ − Aφ = f,

Riesz theory ⇒ (I − A)−1 : C(S2) → C(S2) exists and is bounded ✓

+ For

φγ − Aγ φγ = f and (I − Aγ)(φγ − φ) = (Aγ − A)φ ?

The existence of φγ and the error bound of ∥φγ − φ∥L∞ depend on the
existence and boundedness of (I − Aγ)−1 (?).
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The identity (I − A)−1 = I + (I − A)−1A suggests that

Bγ := I + (I − A)−1Aγ

is an approximate inverse for I − Aγ. Note that

(I − A)Bγ(I − Aγ) = · · · = (I − A)− (Aγ − A)Aγ,

which is equivalent to

Bγ(I − Aγ) = I − Sγ,

where Sγ := (I − A)−1(Aγ − A)Aγ. If we assume

∥(I − A)−1(Aγ − A)Aγ∥ < 1,

Neumann series ⇒ (I − Sγ)−1 exists and is bounded by

∥(I − Sγ)
−1∥ ≤ 1

1 − ∥Sγ∥
.

Then I − Aγ is an injection. If we assume Aγ is compact, then
Fredholm alternative ⇒ (I − Aγ)−1 exists and

(I − Aγ)
−1 = (I − Sγ)

−1Bγ.
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Key Lemma

Assume that operators Aγ are compact and γ ∈ Γ such that the
sequence {Aγ} satisfies

∥(I − A)−1(Aγ − A)Aγ∥ < 1,

Then the inverse operators (I − Aγ)−1 : C(S2) → C(S2) exist and
are bounded by

∥(I − Aγ)
−1∥ ≤

1 + ∥(I − A)−1Aγ∥
1 − ∥(I − A)−1(Aγ − A)Aγ∥

.

For solutions of the equations

φ − Aφ = f and φγ − Aγ φγ = f,

we have the error estimate

∥φγ − φ∥L∞ ≤
1 + ∥(I − A)−1Aγ∥

1 − ∥(I − A)−1(Aγ − A)Aγ∥
∥(Aγ − A)φ∥L∞ .
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▶ Applying previous approximation results of hyperinterpolation, we
can verify Aγ is compact and ∥(I − A)−1(Aγ − A)Aγ∥ < 1.

▶ We need h(21/2(1 − t)1/2) ∈ L1(−1, 1) ∩ L2(−1, 1).

Theorem (An & W. ’24)

Let γ = (m, n, η) ∈ Γ with sufficiently large n and sufficiently small
η. Then

∥φγ∥L∞ ≤ C1(m, n, η)∥f∥L∞ ,

where C1(m, n, η) > 0 is some constant decreasing as n grows or
η decreases. Moreover, there exists x0 ∈ S2 such that

∥φγ − φ∥L∞ ≤ C2(m, n, η)

(
En(K(x0, ·)φ) +

√
η2 + 4η∥χ∗∥L2

)
,

where C2(m, n, η) > 0 is some constant decreasing as n grows or
η decreases, and χ∗ stands for the best approximation polynomial
of K(x0, ·)φ(·) in Pn.
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Numerical experiments for the integral equation solver

+ Toy example setting: For various singular kernel h and continuous
kernel K, let φ ≡ 1 ⇒ f =? ⇒ Solve for φγ and compare with 1.

+ Point sets {xj}m
j=1 for the first stage: We investigate four kinds of

point distributions on sphere:
q Spherical t-designs;
q Minimal energy points: a set of points {xj}m

j=1 ⊂ S2 that minimizes
the Coulomb energy

m
∑

i,j=1

1
∥xi − xj∥2

;

q Fekete points: a set of points that maximizes the determinant
det (pi (xj))

dn
i,j=1 for polynomial interpolation.

q Equal area points.

+ Validation points for the second stage: 5,000 uniformly distributed
points on S2.

Hao-Ning Wu (UGA) 24/33



Example 1: h ≡ 1 with

Wj(x) = wj

(
n
∑
ℓ=0

2ℓ+1
∑
k=1

(∫
S2

h(|x − y|)Yℓ,k(y)dω(y)
)

Yℓ,k(xj)

)
≡ wj.

We let K(x, y) = sin(10|x − y|), thus

f(x, y) = 1 − 2π
∫ 1

−1
sin

(
10
√

2(1 − t)
)

dt ≈ 1.455449001125579.
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Figure: Numerical solutions with n = 20 and m = (2n + 1)2.
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Figure: Non-singular h = 1 and oscillatory K(x, y) = sin(10|x − y|): Uniform
errors with different n and m.
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Example 2: h(x, y) = |x − y|−0.5 with modified moments (and hence
Wj(x)) analytically evaluated. We let K(x, y) = cos(10|x − y|), thus

f(x, y) ≡ 1 − 2π
∫ 1

−1

(√
2(1 − t)

)−0.5
cos

(
10
√

2(1 − t)
)

dt

≈ 0.303738699125466.
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Figure: Numerical solutions with n = 20 and m = (2n + 1)2.
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Figure: Singular h(x, y) = |x − y|−0.5 and oscillatory K(x, y) = cos(10|x − y|):
Uniform errors with different n and m.
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Example 3: h(x, y) = log |x − y| with modified moments (and hence
Wj(x)) stably evaluated. We let K = 1 and

f(x, y) ≡ 1 − 2π
∫ 1

−1
log

(√
2(1 − t)

)
dt = 1 − π(4 log 2 − 2).
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Figure: Numerical solutions n = 5 and m = (2n + 1)2.
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Figure: Singular h(x, y) = log |x − y| and non-oscillatory K = 1: Uniform errors
with different n and m.
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Example 4: h(x, y) = |x − y|−0.5|x + y|−0.5 with modified moments
(and hence Wj(x)) stably evaluated. We let K(x, y) = sin(10|x − y|) and

f(x, y) = 1 − 2π
∫ 1

−1

(√
2(1 − t)

√
2(1 + t)

)−0.5
sin

(
10
√

2(1 − t)
)

dt

≈ 0.011007492841040.
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Figure: Numerical solutions with n = 20 and m = (2n + 1)2.
Hao-Ning Wu (UGA) 31/33



15 20 25 30 35

10
-2

10
-1

10
0

10
1

15 20 25 30 35

10
-2

10
-1

Figure: Singular h(x, y) = |x − y|−0.5|x + y|−0.5 and oscillatory
K(x, y) = sin(10|x − y|): Uniform errors with different n and m.

Hao-Ning Wu (UGA) 32/33



Thanks for your attention.

Photo taken from Grass Island/Tap Mun, Hong Kong.


