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Point distributions on spheres

equal area points: 676 pts  minimal energy points: 676 pts Fekete points: 676 pts spherical 16-designs: 676 pts random points: 676 pts

1z Many point distributions {xj}j’":1 C 52 are investigated:
0 Equal area points;
Q Minimal energy points: {Xj}jm=1 that minimizes the Coulomb energy;

O Fekete points: {x;}; that maximizes the determinant for polynomial
interpolation;
Q Spherical t-designs: {x;}T; that satisfies (quadrature exactness)
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Marcinkiewicz—Zygmund inequality: A characterization

#> Marcinkiewicz and Zygmund (1937): There exists 7 € [0, 1) such that

(=) [ APdwq < L wix()? < (141) [ xPdws ¥x e,
J:

» MZ on spheres: Mhaskar, Narcowich, & Ward (2001)
» MZ on compact manifolds: Filbir & Mhaskar (2011)

In particular on S2, [hx,, == max,cqo ming cx,, dist(x, x;)]
» Spherical t-designs: MZ holds with 17 = 0 if n? < t;
» Scattered data: MZ holds if n S #/hy,, where hy_ is the mesh
norm of {x;}

» Random data (Le Gia & Mhaskar '09): If {x;} are i.i.d drawn from
the distribution wy, then there exists a constant ¢ := &(1y) such
that MZ holds on $2 with probability > 1 — &N~7 on the condition
m > ¢N?log N /75>
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Fredholm integral equations of the second kind

5 Consider the Fredholm integral equation of the second kind

¢(x) — /52 h(lx =y K(x. y)p(y)dw(y) = f(x)

on S2, where |x — y| := 1/2(1 — x - y) denotes the Euclidean distance
between points x and y on S

» The inhomogeneous term f, the kernel K, and the solution ¢ are
continuous, and K may be oscillatory.

» The weight function h: (0,00) — R is allowed to be weakly
singular, i.e., his continuous for all x,y € 52 with x #y, and
there exists positive constants M and « € (0, 2] such that

[h(1x = yD| < Mix — y|*"2,

» It is assumed that the homogeneous equation has no non-trivial
solution: classic Riesz theory = the inhomogeneous equation has
a unique solution continuously depending on f.
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Dangerous: Applying a quadrature rule to discretize the integral op.

m

= Consider a quadrature rule Y ng(xj)%/ gdw and evaluate the
j=1 Q

integral operator in terms of

L, hIx = yDK(x,y)p(y)deoly) & ) wih(lx = x; DK (x,x)) g (x),

resulting

p(x;) — f;th(Xi —x[)K(xi, x))e(x;) = f(x;), i=12....m
iz

1 Numerically evaluating singular integrals is risky: as quadrature points
approach the singularity, the scheme becomes increasingly unstable.

(Think about x; = x; and thus h(|x; — x;|) = o)
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Wise: A semi-analytical approach for the singular kernel

w let {Yyx: £=0,...,n, k=1,...,20+4 1} be the set of spherical
harmonics of degree < n. They are orthogonal polynomials on spheres.

w Funk—Hecke formula: Let g € L1(—1,1) and x € S?. Then

L g Yer(y)deoly) = e Yiu(x)

where 1
pei=2m [ g(OP)dt,

and P,(t) is the standard Legendre polynomial of degree /.

1 Modified moments: Computing the singular part analytically

L Bx = YD Yek(y)deoly) = pe Yoo,

where (Ix —y|:= /21— x-y) and h(|x —y|) = (2Y2(1 — x - y)/?))

1
o =21 /4 h(2Y2(1 — £)Y2)Py(t)dt.
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= Example 1: h(|x —y|) =[x — y|" with =2 < v < 0. Then

T'(x+n)
I'(x)

He = 22 (—K)é IW for x > 0.

> (+3+2) with (x), :=

= Example 2: h(|x —y|) = log |x — y|. Then

= 27r/_11 log(21/2(1 — £)1/2)P,(t)dt | = nfll log(2(1 — £))Py(£)d.

ww Example 3: h(|x —y|) =[x — y|"*|x + y|"2 with —2 < vq,15 < 0.
Then

1
o = 2(V1+"2)/2(2rf)/1(1 —£)1/2(1 4 )22y (t)dt.
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A new quadrature rule for the integral operator

s For the integral operator [o h(|x — y|)K(x,y)¢(y)dw(y):

» We approximate K(x,y)¢(y) using spherical harmonics {Y; ,(y)};
» The approximation should be produced using information on the

point set {xj}j’”zl.
= Approximation of f with only {f(x;)}"; available:
Sloan (1995): Hyperinterpolation
The hyperinterpolation of f € C(S?) onto IP, is defined as

n 241
=Y Y (Yo m Yk

(=0 k=1

m
where (f, Yy k)m := L w;f(x;) Y k(x;) with all w; > 0.
=

\
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Hyperinterpolation and Marcinkiewicz—Zygmund inequality

-

Theorem (Sloan '95 JAT)

Assume the quadrature rule has exactness degree 2n. Then for
any f € C(Q),

nl — 2 < A4m n '
Lof —f V2E,(f

here E(f) == inf ||f — x|lco-
where £,(F) == inf [[F = x|

-

Theorem (An & W. '24 JoC)

Assume the quadrature rule satisfies the MZ property. Then for
any f € C(Q)),

m 1/2
[1Lnf = fll,2 < (\/1+'7 (/Z WJ) +2n1/2) En(f) +\/1* + 4n]x" | 2.
j=1

where En(f) = ||f — x*|.

/
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A new quadrature rule for the integral operator (cont.)

For the integral operator [, h(|x — y|)K(x,y)¢(y)dw(y), we
approximate it as

[ x =y 0 (K x. o) doly)
n 20(+1
=/ _h(lx—yl) (Z Y (KX )9 Yor) m Ym()’)) dw(y)

(=0 k=1
n 2041
:E)E_l (L h<|x—y|>vz,k<y>dw<y>) (K (%), Vi)

m n 20(+1
:J; Wi l;) P </52 h(|x — Y)Yé',k(Y)dW(.V)> Yé,k(xj)> K(x, x;)o(x;)
= 3 W 0K (xx)9(x)

G
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Two-stage numerical scheme for the integral equation

Let ¢, denotes the numerical solution:

i (6, 3)) 9 (x3) = F(x)

J:

= First stage We set x = xj, j = 1,..., m, then numerically solves the
obtained system of linear equations

i lexj)q)’r(xj)—f(xi), i=1...,m

for the quantities @, (x;), j=1,..., m.

= Second stage The value of ¢, (t) at any t € S? can be evaluated by
the direct usage of

Py (t) = F(£) + ) Wi(£)K(t x;) o (x))-

Hao-Ning Wu (UGA) 10/20



Numerical analysis for the numerical scheme

Let
(Ap)(x) := /52 h(lx —y[)K(x, y)p(y)dw(y)

and

M

(Ayg)(x) := ) Wilx)K(x, xj)p(x;).

j=1

& For ¢ — Ap = f: Riesz theory = (I — A)~1: C(S?) — C(S?) exists
and is bounded v/

v For ¢y — Aygy = f and (I — Ay)(¢y — @) = (Ay — A)g: The
existence of @, and the error bound of ||@, — ¢||;~ depend on the
existence and boundedness of (/ — A,)~1 (?).
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w The identity (I — A)~! = | + (I — A) "1 A suggests that
(I—A)t=~B,:=1+(—-AA,
1 Note that
(I =A)By(I = Ay) =+ = (I = A) = (Ay = A)A,,
which is equivalent to
By(I—Ay)=1—(1—A) YA, —A)A, =1 -5,

w If we assume ||(/ — A)"1(A, — A)A,|| < 1, Neumann series =
(I — S,)~1 exists and is bounded by

1

I—S)7Y € ——.

Then | — A, is an injection. If we assume A, is compact, then A, is
also a surjection (and hence bijection) = (/ — A,)~! exists and

(I-A)t=(-5)"B,
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Assume that operators A, are compact and the sequence {A,}

satisfies
(1= A) 1A, — AA | <1,

Then the inverse operators (/ — A, ) ™1 : C(S?) — C(S?) exist and
are bounded by

1+](1=A) A
1= [[(1 = A)~H(Ay = A)A|

1= A~ <

For solutions of the equations

9p—Ap=1f and ¢, —Aypy =",
we have the error estimate

1+ (1= A) 1A
— @l < (A, — A .
Hq)’)‘ (P”L 1 H(I_A)_l(A’Y_A)AV” H v )QDHL

- J
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» Applying previous approximation results of hyperinterpolation, we
can verify A, is compact and || (I — A)~1(A, — A)A,| < 1.

> We need h(21/2(1 —t)1/2) € 11(—1,1) N L?(—1,1) to apply the
theory of hyperinterpolation.

Theorem (An & W. - arXiv :2408.14392)

Let v = (m,n,5) € T with sufficiently large n and sufficiently
small 7. Then

[yl < Com, ) |[F]| v,

where Cy(m, n,7) > 0 is some constant decreasing as n grows or
7 decreases. Moreover, there exists xg € 82 such that

19y = gllie < Co(m, m.17) (En<K<xO. )9) T/ +4n||x*||Lz) ,

where Cy(m, n,77) > 0 is some constant decreasing as n grows or
1 decreases, and x* stands for the best approximation polynomial
of K(xo,-)@(:) in Py.

/
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Numerical experiments for the integral equation solver

= Toy example setting: For various singular kernel h and continuous
kernel K, let ¢ =1 = value of f = Solve for ¢, and compare with 1.

= Point sets {x;}T ; for the first stage: We investigate four kinds of
point distributions on sphere:

O Spherical t-designs;

U Minimal energy points;
O Fekete points;

4 Equal area points.

= Validation points for the second stage: 5,000 uniformly distributed
points on S2.
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Example 1: h(x,y) = |x — y| %5 with modified moments (and hence
W;(x)) analytically evaluated. We let K(x,y) = cos(10|x — y|), thus

fx,y)=1— 27'(/_11 ( 2(1— t)>_0'5cos (10\/m> dt

~ 0.303738699125466.
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Figure: Numerical solutions with n = 20 and m = (2n +1)2.
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n = 20 with varying m = (t + 1)° ) varying n with m = ([1.2n] +1)?

uniform error

Figure: Singular h(x,y) = |x — y| 7% and oscillatory
K(x,y) = cos(10|x — y|): Uniform errors with different n and m.
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Example 2: h(x,y) = log |x — y| with modified moments (and hence

W;(x)) stably evaluated. We let K =1 and

f(x,y) = 1—271/711 Iog( 2(1-1:)) dt =1 n(4log2 —2).
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Figure: Numerical solutions n = 5 and m = (2n+1)2.
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n =5 with varying m = (t +1)* varying n with m = (|1.2n] + 1)
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Figure: Singular h(x, y) = log |x — y| and non-oscillatory K = 1: Uniform
errors with different n and m.
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Thanks for your attention.

Photo taken from the State Botanical Garden of Georgia/Athens, GA.



