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Overview

q Motivation and terms explained - Chapter 1
3 numerical analysis, information-based, and restricted isometry

q Polynomial approximation - Chapters 2–4
3 hyperinterpolation, quadrature, and singular/oscillatory functions

q Numerical solutions to PDEs - Chapter 5
3 spectral methods, Allen–Cahn equation, and maximum principles

q Compressed sensing and imaging - Chapters 6–7
3 compressed sensing, image reconstruction, and new regularization
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Terms explained

Lloyd N. Trefethen (SIAM News, Nov 1992)

Numerical analysis is the study of algorithms for the prob-
lems of continuous mathematics.

e.g., approximating f , solving Lu = f for u, minimizing f , . . .

discretization ↓ samples {f (xj )}

Information-based numerical analysis is the study of algo-
rithms for the problems of continuous mathematics without
full access to the concerned objects but only partial, contam-
inated, and priced information.

You can add qualifications, · · · , but this definition is the essence of the
matter, and the spotlight is on algorithms, not rounding errors. If rounding
errors vanished, 90% of numerical analysis would remain.

- Trefethen: An Applied Mathematician’s Apology (2022)
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Information-based situations

The term information-based refers to situations where the
information (e.g. samples) is

q partial - we cannot solve the continuous mathematics
problem exactly and uniquely with the information at
hand

q contaminated - the information is processed with
errors (e.g. sampling noise and rounding errors)

q priced - we are charged for each sample

à Claude Shannon and information theory? Not the same.
à Information-based complexity (IBC)? Partly the same.

å IBC optimizes total cost (incl. sampling and computation)
å We explore reasonable error bounds under information-based

situations
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Toy example: M. J. D. Powell (1936 – 2015) and derivative-free opt’

Given an oracle (no first-order information, let alone the second)
f : Rd → R, how to solve

min
x∈Rd

f (x)

with function evaluations only, referred to as the derivative-free
optimization?

oracle f
x

f (x)

f (x)

xk

xk+1

Trust region of xk

Trust region of xk+1

Fun fact: both illustrations were designed by ChatGPT.
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Yet another term: restricted isometry

We assume restricted isometry of our samples.

å For numerical integration
m

∑
j=1

wj f (xj ) ≈
∫

Ω
f (x)dω(x):

Marcinkiewicz–Zygmund property (1937)

For all χ ∈ Pn, there exists an η ∈ [0, 1) such that

(1− η)
∫

Ω
χ2dωd ≤

m

∑
j=1

wjχ(xj )2 ≤ (1 + η)
∫

Ω
χ2dωd .

å For sub-sampling A ∈ Rm×n : Rn → Rm (m ≤ n):

Restricted isometry property (Candès & Tao 2005)

For all s-sparse x ∈ Rn, there exists a δs ∈ (0, 1) such
that (1− δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖22.
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Polynomial approximation

q Polynomial interpolation: complicated in multivariate cases

q Least squares (LS) approximation: hard to analyze unless
obtaining the minimizer’s explicit form

q Orthogonal projection: non-implementable on computers

min
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Hyperinterpolation

Ian H. Sloan (in the early 1990s): Does the interpolation of
functions on S1 have properties as good as orthogonal projection?

- Sloan (’95 JAT)

q on S1: Yes.

q on Sd (d ≥ 2) and most high-dim regions: remaining
Problematic to this day!

q Using more points than interpolation? → hyperinterpolation

Photo taken from the Red Centre, UNSW Sydney.

7 / 48



q Ω ⊂ Rd : general compact region

q Pn: space of polynomials of degree ≤ n over Ω; dn := dim Pn

q {p1, p2, . . . , pdn}: orthonormal basis of Pn

The orthogonal projection of f ∈ C (Ω) onto Pn is defined
as Pnf := ∑dn

`=1〈f , p`〉p`, where 〈f , g〉 =
∫

Ω fgdω.

The hyperinterpolation of f ∈ C (Ω) onto Pn is defined as

Lnf :=
dn

∑
`=1

〈f , p`〉mp`,

where 〈f , g〉m :=
m

∑
j=1

wj f (xj )g(xj ) with all wj > 0.
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q Lnf is a discretized version of Pnf .
q Lnf is the minimizer of a discrete LS problem:

Lnf = arg min
p∈Pn

m

∑
j=1

wj [f (xj )− p(xj )]
2.

q Lnf reduces to interpolation (Lnf (xj ) = f (xj ), j = 1, . . . ,m)
if the quadrature rule is minimal: an m-pt quadrature is
minimal if m = dn and its exactness degree exceeds 2n .

The quadrature rule
m

∑
j=1

wjg(xj ) ≈
∫

Ω
gdω is said to have

exactness degree 2n if
m

∑
j=1

wjg(xj ) =
∫

Ω
gdω ∀g ∈ P2n.

Caveat: minimal quadrature rules can be ONLY constructed on a
few low-dimensional Ω, such as [−1, 1], [−1, 1]2, and S1.
No minimal quadrature rules are constructed on [−1, 1]d (d ≥ 3)
or Sd (d ≥ 2).
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The theory of hyperinterpolation was established under the
assumption of quadrature exactness degree.

Theorem (Sloan 1995)

Assume the involved quadrature rule has exactness degree 2n.
Then for any f ∈ C (Ω), its hyperinterpolant Lnf satisfies:

q Lnχ = χ for any χ ∈ Pn;

q 〈Lnf − f , χ〉m = 0 for all χ ∈ Pn;
(cf. 〈Pnf − f , χ〉 = 0 ∀ χ ∈ Pn)

q ‖Lnf ‖2 ≤ V 1/2‖f ‖∞;

q ‖Lnf − f ‖2 ≤ 2V 1/2En(f ).

Here V = |Ω| and En(f ) := inf
χ∈Pn

‖f − χ‖∞.

Remark: No L2 → L2 theory but only C → L2 (explained later).
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On quadrature exactness

x

y

Chebyshev points

Clenshaw–Curtis quad (1960)
n+ 1 points → n exactness degree

x

y

Gauss–Chebyshev points

Gauss–Chebyshev quad (19th century)
n+ 1 points → 2n+ 1 exactness degree

- Trefethen (’08 SIREV): entered the complex plane and
demonstrated for most functions, the Clenshaw–Curtis and Gauss
quadrature rules have comparable accuracy

- Trefethen (’22 SIREV): numerical integral is an analysis topic,
while quadrature exactness is an algebraic matter
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Contributions in Chapter 2

Recall the Marcinkiewicz–Zygmund (MZ) property

(1− η)
∫

Ω
χ2dωd ≤

m

∑
j=1

wjχ(xj )
2 ≤ (1 + η)

∫
Ω

χ2dωd ∀χ ∈ Pn.

What if relaxing 2n to, say, n+ k with 0 < k ≤ n?

Theorem 2.2.8

Assume the quadrature rule has exactness degree n+ k and
satisfies the MZ property. Then for any f ∈ C (Ω):

q Lnχ = χ for any χ ∈ Pk ;

q 〈Lnf − f , χ〉m = 0 for all χ ∈ Pk ;

q ‖Lnf ‖2 ≤
V 1/2
√

1− η
‖f ‖∞;

q ‖Lnf − f ‖2 ≤
(

1√
1− η

+ 1

)
V 1/2Ek(f ).
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Why Marcinkiewicz–Zygmund?

å The key observation to show the stability of Lnf (with exact.):

‖Lnf ‖22+ 〈f −Lnf , f −Lnf 〉m︸ ︷︷ ︸
≥0 (why all wj>0)

= 〈f , f 〉m =
m

∑
j=1

wj f (xj )
2≤ V ‖f ‖2∞︸ ︷︷ ︸

why C→L2 theory only

å When the quad exactness degree is n+ k (0 < k ≤ n):

‖Lnf ‖22 + 〈f −Lnf , f −Lnf 〉m + σm,n,f︸ ︷︷ ︸
≥0?

= 〈f , f 〉m;

σn,k,f = 〈Lnf −Lk f ,Lnf −Lk f 〉 − 〈Lnf −Lk f ,Lnf −Lk f 〉m.

å Note that Lnf −Lk f ∈ Pn, the MZ property implies

|σn,k,f | ≤ η〈Lnf −Lk f ,Lnf −Lk f 〉.
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Numerical results on [−1, 1]

p`: normalized Legendre polynomials; dn = dim Pn = n+ 1
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Figure: Hyperinterpolants LS40f and L40f of f = exp(−x2), constructed by
various quadrature rules.
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Numerical results on S2

Delsarte, Goethals, and Seidel 1977

A point set {x1, x2, . . . , xm} ⊂ S2 is said to be a spherical
t-design if it satisfies

1

m

m

∑
j=1

g(xj ) =
1

4π

∫
S2
gdω ∀g ∈ Pt .

Figure: Spherical 50- and 30-designs, generated by the method proposed by
An, Chen, Sloan, and Womersley (2010).
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p`: spherical harmonics; dn = dim Pn = (n+ 1)2

Figure: Hyperinterpolants LS25f and L25f of a Wendland function, constructed
by spherical t-designs with t = 50 (upper row) and 30 (lower row).
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Figure: Hyperinterpolants LS25f and L25f of f (x) = f (x , y , z) = |x + y + z |,
constructed by spherical t-designs with t = 50 (upper row) and 30 (lower row).
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Contributions in Chapter 3: Hyperinterpolation of singular/oscillatory
functions

Why a higher hyperinterpolation degree is desired even if the
quadrature exactness is not enough: an application

How to approximate functions of the form F (x) = K (x)f (x)?
å K ∈ L1(Ω), which needs not be continuous or of one sign
å f ∈ C (Ω) (and preferably smooth)

Example: fundamental solutions of the Helmholtz equation

G (x , y) =


i

4
H

(1)
0 (κ|x − y |) for x , y ∈ R2

1

4π

e iκ|x−y |

|x − y | for x , y ∈ R3

q PnF := ∑dn
`=1 〈Kf , p`〉p` or LnF := ∑dn

`=1〈Kf , p`〉mp`
To evaluate, by classical quadrature rules, the integrals

〈Kf , p`〉 =
∫

Ω
K (x)f (x)p`dω(x)

is inefficient.
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Instead, a semi-analytical way for
∫

Ω K (x)f (x)dω(x):

1. Replace f by its interpolant or approximant ∑dn
`=1 c`p`;

2. Evaluate the integral by∫
Ω
K (x)f (x)dω(x) ≈

dn

∑
`=1

c`

∫
Ω
K (x)p`(x)dω(x);

3. Assume the modified moments
∫

Ω K (x)p`(x)dω(x) can be
evaluated analytically or stably by some iterative subroutines.
3 Let us make this assumption from now on.

Efficient hyperinterpolation

SnF :=
dn

∑
`=1

(∫
Ω
K (Lnf )p`dω

)
p`.

4. We need to evaluate
∫

Ω K (x)p`(x)p`′(x)dω(x) for SnF , then
additionally represent p`(x)p`′(x) by an orthonormal basis.
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Theorem 3.5.4

Assume the quadrature rule has exactness degree n+ k and
satisfies the MZ property. Then for any f ∈ C (Ω):

q Let K ∈ C (Ω). ‖SnF‖2 ≤ V 1/2
√
1−η
‖K‖∞‖f ‖∞;

q Let K ∈ C (Ω). ‖SnF − F‖2 ≤(
V 1/2
√
1−η
‖K‖∞ + ‖K‖2

)
Ek(f )+2V 1/2En(Kχ∗).

Here χ∗ ∈ Pk is the best uniform approximation of f in Pk .
(We also have analysis for K ∈ L1 and L2)

Considering LnF = Ln(Kf ), we have ‖LnF − F‖2 . Ek(Kf ).
Comparison:

SnF LnF

Ek(f ) & En(Kχ∗) Ek(Kf )
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Numerical results on [-1,1]

å K (x) = e iκx with κ > 0.
å Filon–Clenshaw–Curtis rule (Doḿınguez, Graham, and
Smyshlyaev 2011) for modified moments βr .
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Figure: Approximation of F (x) = e iκx (1.2− x2)−1 by Ln and Sn with
(κ, n,m) = (100, 120, 70). 21 / 48



å Spherical harmonics Y`,k themselves are oscillatory!
å Using high-order spherical t-designs to evaluate the modified
moments analytically.

Figure: Approximation of F (x) = Y`,k (x , y , z) cos(cosh(xz)− 2y) by Ln and
Sn.
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Contributions in Chapter 4: What if totally discarding quadrature
exactness?

A case study on spheres: The polynomial space Pn(Sd ) is the
span of spherical harmonics

{Y`,k : ` = 0, 1, . . . , n, k = 1, 2, . . . ,Z (d , `)};
Pn(Sd ) is also a reproducing kernel Hilbert space with the
reproducing kernel

Gn(x , y) =
n

∑
`=0

Z (d ,`)

∑
k=1

Y`,k(x)Y`,k(y)

in the sense that 〈χ,G (·, x)〉 = χ(x) for all χ ∈ Pn(Sd ).

For hyperinterpolation Ln:

Lnf (x) =
n

∑
`=0

Z (d ,`)

∑
k=1

(
m

∑
j=1

wj f (xj )Y`,k(xj )

)
Y`,k(x)

=
m

∑
j=1

wj f (xj )Gn(x , xj )
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Theorem 4.3.2

Assume the quadrature rule satisfies the MZ property.
Then for any f ∈ C (Sd ):

q ‖Unf ‖L2 ≤
√

1 + η

(
m

∑
j=1

wj

)1/2

‖f ‖∞;

q ‖Unf − f ‖L2 ≤

√1 + η

(
m

∑
j=1

wj

)1/2

+ |Sd |1/2

 En(f )

+
√

η2 + 4η‖χ∗‖L2 .

Notation: Un for hyperinterpolation without quadrature exactness
Note: If the quadrature rule has exactness degree at least 1, then

m

∑
j=1

wj =
∫

Sd
1dωd = |Sd |.
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Controlling the constant η

Mhaskar, Narcowich, and Ward 2001

The MZ property holds for Xm := {x1, . . . , xm} ⊂ Sd if
N . η

2hXm
, where hXm

:= max
x∈Sd−1

min
xj∈Xm

dist(x , xj ) is the mesh

norm of Xm and dist(x , y) denotes the geodesic distance.

Le Gia and Mhaskar 2009

If the quadrature rule is equal-weight and the quadrature
points are i.i.d drawn from the distribution ωd , then there
exists a constant c̄ := c̄(γ) such that the MZ property
holds with probability exceeding 1− c̄N−γ on the condition

m ≥ c̄
Nd logN

η2
.
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Error bound investigated numerically

q The error bound is controlled by n and m.

q Le Gia & Mhaskar (random points)
→ η has a lower bound order

√
n2 log n/m

→
√

η2 + 4η‖χ∗‖L2 has a lower bound of order m−1/4

Figure: Approximating f1(x) = (x1 + x2 + x3)
2 ∈ P6(S

2).
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q f2(x1, x2, x3) := |x1 + x2 + x3|+ sin2(1 + |x1 + x2 + x3|)
q The Franke function for the sphere

f3(x1, x2, x3) :=0.75 exp(−((9x1 − 2)2)/4− ((9x2 − 2)2)/4− ((9x3 − 2)2)/4)

+0.75 exp(−((9x1 + 1)2)/49− ((9x2 + 1))/10− ((9x3 + 1))/10)

+0.5 exp(−((9x1 − 7)2)/4− ((9x2 − 3)2)/4− ((9x3 − 5)2)/4)

−0.2 exp(−((9x1 − 4)2)− ((9x2 − 7)2)− ((9x3 − 5)2)) ∈ C∞(S2)
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Figure: Approximating f2 and f3.
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Applications to nonlinear partial differential equations (PDEs)

To compute smooth solutions of semi-linear PDEs on Sd−1 ⊂ Rd

with dimension d ≥ 3 of the form

ut = Lu +N(u), u(0, x) = u0(x),

where L is a constant-coefficient linear differential operator, and N
is a constant-coefficient nonlinear differential (or non-differential)
operator of lower order.

Example: Allen–Cahn equation

ut = ν2∆u − F ′(u), u(0, x) = u0(x),

where F ′(u) = f (u) = u3 − u.
å energy stability: E(u(t, ·)) ≤ E(u(s, ·)) for s ≤ t < ∞ with

E(u) :=
∫

Sd−1

(
1

2
ν2|∇u|2 + F (u)

)
dωd

å maximum principle: the entire solution is bounded by ‖u0‖∞
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Motivations

Motivations:

1. Remove stringent and technical conditions (e.g. τ � 1 and
supu |F

′′
(u)| ≤ L) in numerical schemes

→ effective maximum principle (D. Li 2021) → energy
stability

2. Investigate the behavior of numerical solutions under
quadrature rules

3. Information-based situations

Our idea in a nutshell: linearizing the nonlinear part N(u) by
hyperinterpolation:

un+1 − un

τ
= ν2∆un+1 −LN

(
(un)3 − un

)
, n ≥ 0,

u0 = LNu0

where τ > 0 is the time step.

For each time iteration: using −∆Y`,k = `(`+ d − 2)Y`,k , only
need to solve a linear system.

29 / 48



Contributions in Chapter 5

Theorems 5.3.1 & 5.3.3: L∞ stability and effective maximum
principle for τ ≤ 1/2

Let 0 < α0 ≤ 1 and s0 ≥ d−1
2 . Assume u0 ∈ Hs(Sd−1)

with s > d − 1 and ‖u0‖∞ ≤ 1. Control η = c̃N−ε for any
c̃ ≥ 0 and ε > s0. If N ≥ N1 := N1 (α0, ν, s, d , u0, ε), then

sup
n≥0
‖un‖∞ ≤ 1 + α0.

If N ≥ N2 := N2(ν, s, d , u0, ε), then for any n ≥ 1,

‖un‖∞ ≤1 + θnα0 +
1− θn

1− θ
τCν,u0,s,d

(√
1 + ηNd−1−s ·

+ηNs0+
d−1
2 −s + ηNs0

)
,

where θ = 1− 2τ.
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Idea of proof:

q Induction for n;

q For each induction:

å Using the best approximation error estimate (Ragozin
1971) with the Sobolev embedding into Hölder spaces (note
that EN(f ) is defined by ‖ · ‖∞, while Sobolev spaces here
‖ · ‖L2):

EN(f ) ≤
c3(f )

Ns− d−1
2

‖f ‖Hs ;

å Using discrete smoothing technique (bootstrapping) for the
boundedness of ‖un‖Hs .
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Theorem 5.3.6: L∞ stability for 1/2 < τ < 2

Let 1/2 < τ ≤ 2− ε0 for some 0 < ε0 ≤ 1,

M0 =
1

2

(
(1 + τ)3/2
√

3τ
· 2

3
+

√
2 + τ

τ

)
,

and s0 ≥ (d − 1)/2. Assume u0 ∈ Hs(Sd−1) with s > d − 1
and ‖u0‖∞ ≤ M0. Control η = c̃N−ε for any c̃ ≥ 0 and
ε > s0. If N ≥ N3 := N3 (ε0, ν, s, d , u0, ε), then

sup
n≥0
‖un‖∞ ≤ M0.

No effective maximum principle derived.

Idea of proof:

q Induction for n again;

q For each induction, using lemma by Li to bound ‖p(un)‖∞,
where p(x) = (1 + τ)x − τx3.
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Refined results with quadrature exactness

q If the quadrature rule has exactness degree 2N, our scheme for
ut = Lu +N(u) is equivalent to a discrete Galerkin scheme

1

τ

〈
un+1 − un, χ

〉
m
=
〈
Lun+1, χ

〉
m
+ 〈N(un), χ〉m ∀χ ∈ PN .

Corollary 5.4.1: Additionally assuming the quad. exact. 2N

q L∞ stability for τ ≤ 1/2. If N ≥ N4 (α0, ν, s, d , u0) ,
then supn≥0 ‖un‖∞ ≤ 1 + α0.

q Effective maximum principle for τ ≤ 1/2. If
N ≥ N ′4(ν, s, d , u0), then for any n ≥ 1,

‖un‖∞ ≤ 1 + θnα0 +
1− θn

1− θ
τCν,u0,s,dN

d−1−s .

q L∞-stability for 1/2 < τ < 2. Let 1/2 < τ < 2− ε0
for some 0 < ε0 ≤ 1. If N ≥ N ′′4 (ε0, ν, s, d , u0), then

sup
n≥0
‖un‖∞ ≤ M0.
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Energy stability

Lemma 5.4.3: Energy estimates

For any n ≥ 0, if the quad exactness degree ≥ 2N, then

Ẽ(un+1)− Ẽ(un) +
(

1

τ
+

1

2

) m

∑
j=1

wj (u
n+1(xj )− un(xj ))

2

≤ 3

2
max

{
‖un‖2∞, ‖un+1‖2∞

} m

∑
j=1

wj (u
n+1(xj )− un(xj ))

2;

if the quad exactness degree ≥ 4N, then

E(un+1)− E(un) +
(

1

τ
+

1

2

) ∫
Sd−1

(un+1 − un)2dωd

≤ 3

2
max

{
‖un‖2∞, ‖un+1‖2∞

} ∫
Sd−1

(un+1 − un)2dωd .

Here E(u) denote the energy (previously defined) of u, and
Ẽ(u) discretizes E(u) by the concerned quadrature rule.
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q For (discrete) energy stability, it suffice to control ‖un‖∞
(by L∞ stability derived previously) such that

1

τ
+

1

2
≥ 3

2
sup
n≥0
‖un‖2∞.

q Why quadrature exactness?
To derive the above (discrete) energy estimates, we need〈

f (un)−LN(f (u
n)), un+1 − un

〉
m
= 0

and 〈
f (un)−LN(f (u

n)), un+1 − un
〉
= 0,

respectively, which are ensured by

1) the projection property 〈f −LN , χ〉m = 0 ∀χ ∈ PN of
hyperinterpolation if the quad exactness deg ≥ 2N; and

2) 〈f −LN , χ〉 = 〈f −LN , χ〉m if f ∈ P3N and the quad
exactness deg ≥ 4N.
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Figure: Numerical solution to the Allen–Cahn equation with ν = 0.1 and initial
condition u(0, x , y , z) = cos(cosh(5xz)− 10y) using our scheme with τ = 0.5,
N = 15, and different quadrature points. From top row to bottom row:
m = b120N2 lnNc = 73, 117 random points; m = (2N + 1)2 = 961 equal
area points; and m = 961 spherical 2N-designs.
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Compressed sensing (CS) and imaging

To recovery an unknown x̄ ∈ Rn from b = Ax̄ + e ∈ Rm, where
A ∈ Rm×n with m� n, and e ∈ Rm with ‖e‖2 ≤ τ:

q One may consider solving the `0 minimization problem:

min
x∈Rn

‖x‖0 s.t. ‖Ax − b‖2 ≤ τ.

Alternatively, the basis pursuit (BP) model:

min
x∈Rn

‖x‖1 s.t. ‖Ax − b‖2 ≤ τ.

q Our springback model: For α > 0,

min
x∈Rn

‖x‖1 −
α

2
‖x‖22 s.t. ‖Ax − b‖2 ≤ τ.

q Standard CS theory holds for the BP model, assuming that x̄
or its coefficients after an orthonormal transform are sparse:

‖xopt − x̄‖2 ≤ ?

One type of theory is established under the RIP framework
(restricted isometry).
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Extending to image reconstruction: y =MX̄ + e ∈ Cm, where
the unknown X̄ ∈ CN×N , M : CN×N → Cm with m� N2, and
e ∈ Rm with ‖e‖2 ≤ τ.

q BP model → total variation (TV) model (‖X‖TV = ‖∇X‖1):

min
X∈CN×N

‖X‖TV s.t. ‖MX − y‖2 ≤ τ,

q Springback model → enhanced TV model:

min
X∈CN×N

‖X‖TV −
α

2
‖∇X‖22 s.t. ‖MX − y‖2 ≤ τ,

q Images becomes sparse after the gradient transform ∇ (due to
the low density of edges within an image), but ∇ fails to be
orthonormal → obliged to establish image reconstruction
theory from scratch.
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Enhanced TV from a PDE perspective

Enhanced TV flow:∫ (
‖∇f (x)‖ − α

2
‖∇f (x)‖2

)
dx → ∂f

∂t
= div

(
∇f
‖∇f ‖

)
−α∆f
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Figure: Illustration of the TV and enhanced TV regularization for image
denoising. Top row: SSIM values of each image; Bottom row: intensity profiles
of each image along the horizontal straight line splitting the image equally.
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Restricted isometry property (RIP) recalled

For sub-sampling A ∈ Rm×n : Rn → Rm (m ≤ n):

Restricted isometry property (Candès & Tao 2005)

For all s-sparse x ∈ Rn, there exists a δs ∈ (0, 1) such that
(1− δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖22, and the smallest δs
is said to be the restricted isometry constant (RIC) associated
with A.

Extension to images

We say that a linear operator A : Cn1×n2 → Cm has the RIP
of order s and level δ ∈ (0, 1) if for all s-sparse X ∈ Cn1×n2 ,
there holds

(1− δ)‖X‖22 ≤ ‖AX‖22 ≤ (1 + δ)‖X‖22.
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Contributions in Chapter 6

Theorem 6.4.1

Assume the RIP of A and let δ3s and δ4s be the 3s- and
4s-RIC’s of A, respectively, with δ3s < 3(1− δ4s)− 1. If

α ≤
√

1− δ4s
√

3s −
√

1 + δ3s
√
s

(
√

1− δ4s +
√

1 + δ3s)‖xopt‖2
,

then the minimizer xopt of the springback problem satisfies

‖xopt − x̄‖2 ≤
√

2

D1
τ +

4

α
‖x̄ − x̄s‖1,

where D1 =
α

2

√
1− δ4s +

√
1 + δ3s√

3s +
√
s

.

Here x̄s ∈ Rn denotes the truncated vector corresponding to the s
largest values of x̄ (in absolute value).
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q The CS theory for the springback model assumes the same RIP
condition as that for the BP model, namely, δ3s < 3(1− δ4s)− 1.

q For the BP model and previous non-convex models, their
reconstruction bounds take the form of

‖xopt − x̄‖2 ≤ C1,sτ + C2,s
‖x̄ − x̄s‖1√

s
,

q Comparison within the sparse regime, i.e., ‖x̄ − x̄s‖1 = 0:

å The springback model has a tighter reconstruction bound
than them in the sense of√

2

D1
τ ≤ Csτ

if the level of noise τ satisfies

τ >
2

D1C 2
s

.
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Contributions in Chapter 7

Let H : CN×N → CN×N be the orthonormal bivariate Haar
wavelet transform. Images are also compressible w.r.t. wavelet
transforms:

Theorem 7.3.9

Let N = 2n with n ∈N. AssumeM : CN×N → Cm be such
that the composite operator MH∗ : CN×N → Cm has the
RIP of order Cs log3(N) and level δ < 0.6. Let X̄ ∈ CN×N be
a mean-zero image or an image containing some zero-valued
pixels, and X opt the solution to the enhanced TV model. If

α ≤
√

48s log(N)

K2‖∇X opt‖2
,

then we have

‖X̄ − X opt‖2 .
√√

s

α
τ +

1

α
‖∇X̄ − (∇X̄ )s‖1.
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Needell and Ward 2013

The reconstruction error bound of the TV model (with RIP
level δ < 1/3):

‖X̄ − X opt‖2 .
‖∇X̄ − (∇X̄ )s‖1√

s
+ τ.

To explore the scenarios where the bound of the enhanced TV
model is tighter in the sense of√√

s

α
τ +

1

α
‖∇X̄ − (∇X̄ )s‖1 .

‖∇X̄ − (∇X̄ )s‖1√
s

+ τ :

q Sparse regime ‖∇X̄ − (∇X̄ )s‖1 = 0: τ &
√
s

α

q Noise-free regime τ = 0:
s

‖∇X̄ − (∇X̄ )s‖1
. α

LHS is an increasing function of s, and a limited number m of
observations admits a small s
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Pros and Cons of our new model

Pros:

q Benefited from non-convexity, our models do not introduce
additional tricky implementation:

In light of the difference-of-convex algorithm (DCA), we first
linearize the subtracted convex term, and then solve a
sequence of convex subproblems by ADMM.

q Our model enjoys tighter reconstruction error bounds in
scenarios of less observations and/or larger noise level.

Cons:

q Achilles’ Heel: the choice of α - our model may be unstable
with an inappropriate alpha, but it always performs better
than the convex model with an appropriate α.
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Figure: Reconstruction of 256× 256 Shepp–Logan phantom.
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Thanks for your attention.

Photo taken from Grass Island/Tap Mun, Hong Kong.


