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Terms explained

Lloyd N. Trefethen (SIAM News, Nov 1992)

Numerical analysis is the study of algorithms for the prob-
lems of continuous mathematics.

e.g., approximating f, solving Lu = f for u, minimizing f, ...
discretization J. samples {f(x;)}

Information-based numerical analysis is the study of algo-
rithms for the problems of continuous mathematics without
full access to the concerned objects but only partial, contam-
inated, and priced information.

You can add qualifications, - - -, but this definition is the essence of the
matter, and the spotlight is on algorithms, not rounding errors. If rounding
errors vanished, 90% of numerical analysis would remain.

- Trefethen: An Applied Mathematician's Apology (2022)
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Information-based situations

The term information-based refers to situations where the
information (e.g. samples) is

U partial - we cannot solve the continuous mathematics
problem exactly and uniquely with the information at
hand

U contaminated - the information is processed with
errors (e.g. sampling noise and rounding errors)

U priced - we are charged for each sample

- _J

m Claude Shannon and information theory? Not the same.
m Information-based complexity (IBC)? Partly the same.
= |BC optimizes total cost (incl. sampling and computation)
= \\e explore reasonable error bounds under information-based
situations
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Toy example: M. J. D. Powell (1936 — 2015) and derivative-free opt’

Given an oracle (no first-order information, let alone the second)
f:RY = R, how to solve

min f(x)

x€RY

with function evaluations only, referred to as the derivative-free
optimization?

Fun fact: both illustrations were designed by ChatGPT.
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Yet another term: restricted isometry

We assume restricted isometry of our samples.

= For numerical integration ) w;f(x;) ~ / f(x)dw(x):
j=1 0

Marcinkiewicz—Zygmund property (1937)

For all x € IP,, there exists an 1 € [0,1) such that
(=) [ xdwa < 5 wix(9)? < (1) | e
J:

= For sub-sampling A € R™*" : R"” — R™ (m < n):

Restricted isometry property (Candés & Tao 2005)

For all s-sparse x € R", there exists a ds € (0,1) such
that (1 —d)|x[|53 < [[Ax[I3 < (14 65)[Ix]l5-
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Polynomial approximation

U Polynomial interpolation: complicated in multivariate cases

0 Least squares (LS) approximation: hard to analyze unless
obtaining the minimizer's explicit form

U Orthogonal projection: non-implementable on computers

6/48



Hyperinterpolation

lan H. Sloan (in the early 1990s): Does the interpolation of
functions on S! have properties as good as orthogonal projection?

# Sloan ('95 JAT)
0 on S': Yes.
Q on S (d > 2) and most high-dim regions: remaining
Problematic to this day!
U Using more points than interpolation? — hyperinterpolation

Photo taken from the Red Centre, UNSW Sydney.
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0 O ¢ RY: general compact region
U IP,: space of polynomials of degree < n over (); d, :=dimP,

Pd, }: orthonormal basis of P,

as Ppf

4 The orthogonal projection of f € C(Q)) onto PP, is defined
= Y0 (f, pe)pr, where (f, g) = [, fgdw. )

S

4 The hyperinterpolation of f € C(Q) onto IP,, is defined as

where (f, g)m

= ¥ wif(x)g(x;) with all w; > 0.
j=1

<f Pe) mpe,

rvjn_

Lnf =

(=1
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O L,f is a discretized version of P,f.
Q L,f is the minimizer of a discrete LS problem:

m

Lof =arg min Y wi[f(x5) — p(x)]%.
peEP, =
Q L,f reduces to interpolation (L,f(x;) = f(x;), j=1,..., m)
if the quadrature rule is minimal: an m-pt quadrature is
minimal if m = d,, and its exactness degree exceeds 2n .

The quadrature rule Z w;g(x;) /gdw is said to have
j=1
exactness degree 2n if

Y wig(x) = /diw Vg € Py,

j=1

Caveat: minimal quadrature rules can be ONLY constructed on a
few low-dimensional Q, such as [—1,1], [-1,1]?, and S'.

No minimal quadrature rules are constructed on [—1,1]? (d > 3)
or$9 (d > 2).
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The theory of hyperinterpolation was established under the
assumption of quadrature exactness degree.

Theorem (Sloan 1995)

Assume the involved quadrature rule has exactness degree 2n.
Then for any f € C(Q), its hyperinterpolant L,f satisfies:

Q L,x = x for any x € P,;
Q (L,f —f,x)m=0forall x € Py,
(cf. (Paf —f,x) =0V x €Pp)
Q [ Lafll2 < VY2||f]|eo;
Q ||Laf — flla < 2VI2E, ().

/

Here V = |Q] and E,(f) := inf ||f — X]|co-
xeP,

Remark: No [? — L2 theory but only C — L2 (explained later).
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On quadrature exactness

y y

Chebyshev points Gauks—Chebyshev points

Clenshaw—Curtis quad (1960) Gauss—Chebyshev quad (19th century)

n+ 1 points — n exactness degree n+ 1 points — 2n+ 1 exactness degree

# Trefethen ('08 SIREV): entered the complex plane and
demonstrated for most functions, the Clenshaw—Curtis and Gauss
quadrature rules have comparable accuracy

# Trefethen ('22 SIREV): numerical integral is an analysis topic,
while quadrature exactness is an algebraic matter
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Contributions in Chapter 2

Recall the Marcinkiewicz—Zygmund (MZ) property

(1) [ ewq < Y wi()? < (L) [ xPdwa Yy € P,
=1

J

What if relaxing 2n to, say, n+ k with 0 < kK < n?

Theorem 2.2.8

Assume the quadrature rule has exactness degree n+ k and
satisfies the MZ property. Then for any f € C(Q):

Q L,x = x for any x € Py;
Q (Lpf —f,x)m =0 for all x € Py;
V1/2

flloos
Q [[Laf = fl2 < (

Q [I£afll2 <

1
= + 1> VY2EL(f).
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Why Marcinkiewicz—Zygmund?

= The key observation to show the stability of £,f (with exact.):

ILaf I3+ (F = Lof f = Laf)m = (F. F)m =}, wif (x)°< VIIFIIZ,
j=1

>0 (why all w;>0)

why C—L2 theory only

w \When the quad exactness degree is n+ k (0 < k < n):

H‘CﬂfH% + <f — Lpf, f— »Cnf>m + Omnf = <f. f>m;

>0?

U'n'k’f = <£nf — Ekf, ﬁnf — ﬁkf> — (ﬁnf — Ekf, ﬁnf — ﬁkf>m.

w Note that L,f — Lif € IP,,, the MZ property implies
|0—n'k’f| S ﬂ(ﬁnf — Ekf, ﬁnf — ﬁkf>
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Numerical results on [—1, 1]

pe: normalized Legendre polynomials; d, = dimP, =n+1

41-pt Gauss-Legendre quad 10714 25-pt Gauss-Legendre quad 10
T 5 T 6

— T
— 1L/ — fl}a

Al 0.5 0.5 /
WA AN
-0.5 0 0.5 -0.5 0 0.5

z x

Figure: Hyperinterpolants Ei‘of and Lgof of f = exp(—x?), constructed by
various quadrature rules.
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Numerical results on G2

Delsarte, Goethals, and Seidel 1977

A point set {x1,x2,...,xm} C 52 is said to be a spherical
t-design if it satisfies

m 1
- )=— [ gd P;.
m;g(xf) 47T/52g w VgeP;

spherical 50-design: 2601 pts spherical 30-design: 961 pts

Figure: Spherical 50- and 30-designs, generated by the method proposed by
An, Chen, Sloan, and Womersley (2010).
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pe: spherical harmonics; d, = dimIP,, = (n + 1)?

5.1 £5,f — | .
x10°
1.56
154 2
1.52
15
15
1.48 1
1.46
05
1.44
Losf [Lasf — [l "
<10
1.56 2
1.54
1.52 15
15
1
1.48
1.46 05
1.44

Figure: Hyperinterpolants Cgsf and Ly5f of a Wendland function, constructed
by spherical t-designs with t = 50 (upper row) and 30 (lower row).
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L5 f 155 — /1

16 0.045
14 004
12 0.035
0.03
! 0.025
08 0.02
06 0.015
0.4 0.01
0.2 0.005
Lo f [Lasf =
16 0.06
14 ‘
12 0.05
1 0.04
08 0.03
08 0.02
0.4
02 0.01

Figure: Hyperinterpolants £3:f and Losf of f(x) = f(x,y,z) = |x+y + 2|,
constructed by spherical t-designs with t = 50 (upper row) and 30 (lower row).
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Contributions in Chapter 3: Hyperinterpolation of singular/oscillatory

functions
Why a higher hyperinterpolation degree is desired even if the
quadrature exactness is not enough: an application

How to approximate functions of the form F(x) = K(x)f(x)?
= K € [1(Q), which needs not be continuous or of one sign
w f € C(Q) (and preferably smooth)

Example: fundamental solutions of the Helmholtz equation

iHél)(K|x—y|) for x, y € R?
G(va) = 1 ei*lx—yl ‘ R
HW or X,y S

Q PuF = Ty (KF pe)pe or LaF := Xy (KF, pr) mpe
To evaluate, by classical quadrature rules, the integrals

(Kf ) = [ K(F(prd(x)

is inefficient.
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Instead, a semi-analytical way for [ K (x)f(x)dw(x):
1. Replace f by its interpolant or approximant Z;’;l crpy;
2. Evaluate the integral by

dp
/Q KEde() = Y /Q K (x)pe(x)dw (x);

3. Assume the modified moments [, K(x)py(x)dw(x) can be
evaluated analytically or stably by some iterative subroutines.
o Let us make this assumption from now on.

Efficient hyperinterpolation

o= B (et o

4. We need to evaluate [ K(x)p;(x)ps(x)dw(x) for SyF, then
additionally represent py(x )py( ) by an orthonormal basis.
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Theorem 3.5.4

Assume the quadrature rule has exactness degree n+ k and
satisfies the MZ property. Then for any f € C(Q):
1/2
0 Let K € C(Q). [SoFll2 < 52 (K]l ]l
Q Let K € C(QO). ||SpF — Fl]2 <
1/2 *
. VKoo + 1K12) Ei(£)+2VY2E0 (Kx). )

Here x* € Py is the best uniform approximation of f in Py.
(We also have analysis for K € L! and L?)

Considering L,F = L,(Kf), we have ||L,F — Fl|2 < Ex(KF).
Comparison:

SnF | L.F
Ex(f) & E,(Kx") \ Ei(Kf)
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Numerical results on [-1,1]

= K(x) = e™ with x > 0.

w Filon—Clenshaw—Curtis rule (Dominguez, Graham, and

Smyshlyaev 2011) for modified moments f3,.

real parts

imaginary parts

error

hyperinterpolation

I
0

1
|
|
|
|
|

05

!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I

0

efficient, hyperinterpolation

05

Figure: Approximation of F(x) = (1.2 — x?)~! by £, and S, with

(x, n,m) = (100, 120, 70).
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w Spherical harmonics Y 4 themselves are oscillatory!

w Using high-order spherical t-designs to evaluate the modified
moments analytically.

K(z,y,2) = Yis(r,y,2)

F(2,y, 2) = cos(cosh(zz) — 2y) LaF:m =62 |£xF — F| SuF :m =625 |SuF — F|
x10%
05 o 05 05 3 05 o o oo oo o008 05 3 05 [T
1 1 1
K(x,y,2) = Yo _ou(x,v,2)
F(z,,2) = cos(cosh(wz) — 2y) LioF i m = 2209 |CwF — F| SwF i m = 2200 |SwF — F|
10°
05 3 o5 05 3 0s o 005 01 o1 05 3 05 o 2 3 s s
) ] 1

Figure: Approximation of F(x) = Yy x(x,y, z) cos(cosh(xz) — 2y) by L, and
Sh.
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Contributions in Chapter 4: What if totally discarding quadrature

exactness?

A case study on spheres: The polynomial space IP,(S9) is the
span of spherical harmonics

{Yie: £=01,....n, k=1,2,...,2(d, 0)};

IP,(S9) is also a reproducing kernel Hilbert space with the
reproducing kernel

Gley) =Y Y Yer(x)Yer(y)

(=
in the sense that (x, G(-, x)) = x(x) for all x € P,(S%).
For hyperinterpolation L:

(=0 k=1 \j=1
=) wif () Gn(x, %))
j=1
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Theorem 4.3.2

-

Assume the quadrature rule satisfies the MZ property.
Then for any f € C(S9):

1/2
Q [Unfllz < VI+7 (Zl WJ) 1 1]eo;
J:

m

1/2
Q[ Uaf = f12 < \/1+17<wa-> + (S92 | Eq(F)

J=1

+ /12 + 4 x" | -

J

Notation: U, for hyperinterpolation without quadrature exactness
Note: If the quadrature rule has exactness degree at least 1, then

Y w :/ 1dwy = |59).
= 5
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Controlling the constant 7

Mhaskar, Narcowich, and Ward 2001

N < 57—, where hy, := max_min dist(x, x;) is the mesh

~ 2hy,"’ x€89-1 x;EXm

norm of X, and dist(x, y) denotes the geodesic distance.

Le Gia and Mhaskar 2009

If the quadrature rule is equal-weight and the quadrature
points are i.i.d drawn from the distribution wy, then there
exists a constant ¢ := &(y) such that the MZ property
holds with probability exceeding 1 — ¢N~7 on the condition

N9 log N
/A

m2>¢
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Error bound investigated numerically

U The error bound is controlled by n and m.
Q Le Gia & Mhaskar (random points)

— 1 has a lower bound order \/n?logn/m

— /12 + 47| x* |2 has a lower bound of order m~1/4

Convergence of U, f1

] “n=
10° 4

error

0 0.5 1 1.5 2 2.5
number m of quad. points «10°

Figure: Approximating fi(x) = (x; + x2 + x3)? € Pg(S?).
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a f_2(X1,X2,X3) = |X1 + X2 +X3| +sin2(1 + |X1 + X2 +X3|)
1 The Franke function for the sphere

fa(x1, %2, x3) :=0.75exp(—((9x1 — 2)?) /4 — (92 — 2)) /4 — ((9x3 — 2)?) /4)

error

+0.75exp(—((9x1 + 1)%)/49 — ((9x2 + 1)) /10 — ((9x3 + 1)) /10)
+0.5exp(—((9x1 — 7)%)/4 — (9% — 3)%)/4 — ((9x3 — 5)°) /4)
—0.2exp(—((9x1 = 4)%) = (9% = 7)%) = (93 = 5)?)) € C*(S?)

Convergence of U, fo N Convergence of U, f3
--n=3 10 -=n=3
—Hn =06 —Hn =06
n=29 n=9
n=12 “+-n=12
— 414 — VA4

error

0.5 1 15 2 0 0.5 1 15 2
number m of quad. points 105 number m of quad. points, 105

Figure: Approximating f, and f3.
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Applications to nonlinear partial differential equations (PDEs)

To compute smooth solutions of semi-linear PDEs on $9~1 C R¢
with dimension d > 3 of the form

up = Lu+ N(u), u(0,x) = up(x),

where L is a constant-coefficient linear differential operator, and N
is a constant-coefficient nonlinear differential (or non-differential)
operator of lower order.

Example: Allen—Cahn equation
up = vV2Au — F'(u),  u(0,x) = up(x),
where F'(u) = f(u) = v® — u.
= energy stability: E(u(t,-)) < E(u(s,-)) for s <t < oo with
— 1o 2
£(u) == /Sd,1 (21/ Vul +F(u)> dwy

= maximum principle: the entire solution is bounded by || ug||c
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Motivations:

1. Remove stringent and technical conditions (e.g. T < 1 and
sup, |F"(u)| < L) in numerical schemes
— effective maximum principle (D. Li 2021) — energy
stability

2. Investigate the behavior of numerical solutions under
quadrature rules

3. Information-based situations

Our idea in a nutshell: linearizing the nonlinear part N(u) by
hyperinterpolation:

n+1 n

u :1/2AU"+1—£N ((un)3_un), I’IZO,

—u
T
u = Lyuo
where T > 0 is the time step.

For each time iteration: using —AY; x = ¢({ +d —2)Y;x, only

need to solve a linear system.
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Contributions in Chapter 5

Theorems 5.3.1 & 5.3.3: L stability and effective maximum

principle for T < 1/2

Let 0 < ag < 1 and sg > %. Assume uy € H(S971)
with s > d —1 and ||ug||ec < 1. Control § = EN~¢ for any
¢>0ande>sp. If N> Ny := Ny (ap,v,s,d, up,€), then

sup [|u"Jeo < 14 ap.
n>0

If N> Ny := Ny(v,s,d, up,€), then for any n > 1,

n

1-06
||Un||oo S]. + 9"060 + m’nyyuO's'd (\/ 1 + 77Nd7175 .

_|_’7NS()+%—S + 17,\/50) ,

where 6 =1 — 27.

- J
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Idea of proof:
O Induction for n;
U For each induction:
w Using the best approximation error estimate (Ragozin
1971) with the Sobolev embedding into Holder spaces (note
that En(f) is defined by || - ||co, while Sobolev spaces here

- 1l2): )
3
n() < 2E0 el
w Using discrete smoothing technique (bootstrapping) for the
boundedness of ||u"||ys.
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Theorem 5.3.6: L* stability for 1/2 < 7 < 2

Let 1/2 < 71 <2 —¢q forsome 0 < ¢p < 1,

w1 (1+r)3/234r 2+ T
0~ V3T 3 T '

and s > (d —1)/2. Assume up € H*(S9 1) withs > d—1
and ||u®]|cc < Mo. Control 7 = EN~¢ for any & > 0 and
e€>sp. If N> N3 := N3 (eo,v,s,d, up,€), then

sup ||u"|ee < Mp.

\_ n>0

J

No effective maximum principle derived.
Idea of proof:
Q Induction for n again;

Q For each induction, using lemma by Li to bound ||p(t")]|eo,
where p(x) = (1 + 7)x — 5.
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Refined results with quadrature exactness

Q If the quadrature rule has exactness degree 2/, our scheme for
ur = Lu+ N(u) is equivalent to a discrete Galerkin scheme

1
- <u”+1 — u”,)(>m = <Lu”+1,)(>m + (N(u"),x),, Yx €Py.

Corollary 5.4.1: Additionally assuming the quad. exact. 2\

Q L= stability for T < 1/2. If N > Ny (ao,v, s, d, up) ,
then sup,>¢ |[u"]|ec < 14 ao.

O Effective maximum principle for 7 < 1/2. If
N > N,(v,s,d, up), then for any n > 1,

n

1-6
||Un||oo <1+ 9"“0 + ﬂTCv,uo,s,deilis-

O L[*-stability for 1/2 <7< 2. Let1/2<T<2—¢g
for some 0 < €9 < 1. If N > NJ(eo,v,s,d, up), then

sup [[u"]|ee < Mp.
n>0
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Energy stability

Lemma 5.4.3: Energy estimates

For any n > 0, if the quad exactness degree > 2N, then

2w - 8w+ (1+3) Lw ) - o)

T j=1

3 n n
< 5 max {[|u”lG, [[u" G} Y i (™ () — ()
Jj=1

if the quad exactness degree > 4N, then

E(u™Y) — E(u") + <1 + ;) /5‘d—1<un+1 — u")2dwy

T

< S max {[lu” 2 2} [ (" = o) dws.

~— N| W

Here £(u) denote the energy (previously defined) of u, and
&(u) discretizes £(u) by the concerned quadrature rule.
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Q For (discrete) energy stability, it suffice to control ||u"||e
(by L™ stability derived previously) such that
1 1_3
- > g nj|2 ]
U Why quadrature exactness?
To derive the above (discrete) energy estimates, we need

<f(u”) — Ly (f(u™)), ™t — u”>m =0

and
<f(u”) — Ly(f(u™)), "t — u”> =0,
respectively, which are ensured by
1) the projection property (f — Ly, x),, = 0 Vx € Py of
hyperinterpolation if the quad exactness deg > 2N; and

2) (f—Ln,x) =(f —Ln,X),, if f €P3y and the quad
exactness deg > 4N.
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(n,t) = (0, 0) (n,t) = (10, 5) (n,t) = (20, 10) (n,t) = (30, 15) (n,t) = (140, 70)

@QQJJ

(n,t) = (0, 0) (n,t) = (10, 5) (n,t) = (20, 10) (n,t) = (30, 15) (n, (140, 70)

P9000

(n,t) = (0, 0) (n,t) = (10, 5) (n,t) = (20, 10) (n,t) = (30, 15) (n,t) = (140, 70)

22000

Figure: Numerical solution to the Allen—Cahn equation with v = 0.1 and initial
condition u(0, x, y, z) = cos(cosh(5xz) — 10y) using our scheme with T = 0.5,
N = 15, and different quadrature points. From top row to bottom row:

m = [120N? In N| = 73,117 random points; m = (2N + 1) = 961 equal
area points; and m = 961 spherical 2/N-designs.

36/48



Compressed sensing (CS) and imaging

To recovery an unknown X € R” from b = Ax + e € R™, where
A € R™" with m < n, and e € R™ with |le]2 < T:
QO One may consider solving the #° minimization problem:

min fIxo st ||Ax—b]» < 7.
xeR"

Alternatively, the basis pursuit (BP) model:

i .t. — <T.
min [l st [Ax— bl <

Q Our springback model: For & > 0,
. 14 2
min |[x||1 — = ||x s.t. ||Ax—bl2 < T.
min x|~ SlxI3 st JAx b <
QO Standard CS theory holds for the BP model, assuming that x
or its coefficients after an orthonormal transform are sparse:
ot — &2 < 2

One type of theory is established under the RIP framework
(restricted isometry).
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Extending to image reconstruction: y = MX + e € C™, where
the unknown X € CN*N A . CN*N 5 C™ with m < N2, and
e € R™ with |le]]2 < 7.

QO BP model — total variation (TV) model (|| X||tv = ||V X]|1):

min HXHTV s.t. ||MX _)/HQ <,
XGCNXN

U Springback model — enhanced TV model:

min | X|lry = SIVX|Z st [MX -yl <7,
XeCNxN 2
QO Images becomes sparse after the gradient transform V (due to
the low density of edges within an image), but V fails to be
orthonormal — obliged to establish image reconstruction
theory from scratch.
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Enhanced m a PDE perspective

@ Gabriel Peyré
> The gradient flow of the Dirichlet energy is the heat equation, which blur
edges. The total variati nage cartoon-like.

azon/trabajos

L? gradient flow: mfin E(f) % —VE(f)

7]
Heat equation: 3 J [V f(z) H2dz—> f =Af

ot

TV fow: [ [VF(@)ldz _.af div (Lf>

V£l

0:01/0:07 ) & |

Enhanced TV flow:
of Vit
IVF) = SIVFIP) dx = 5 _d"’( > —ar
J (w0l = 319 7001) ax = 5 = éiv (7



Groundtruth, SSIM=1.0000 Noisy image, SSIM=0.0190 TV, SSIM=0.8141 Enhanced TV, SSIM=0.9507

s

1 1
08 2 08 08
06 1 06 06
0.4 0 0.4 0.4
02 - 02 02
0

-2 0 0
20 40 60 80 100 120 20 40 60 80 100 120 20 40 60 80 100 120 20 40 60 80 100 120

Figure: lllustration of the TV and enhanced TV regularization for image
denoising. Top row: SSIM values of each image; Bottom row: intensity profiles
of each image along the horizontal straight line splitting the image equally.
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Restricted isometry property (RIP) recalled

For sub-sampling A € R™*" : R" — R™ (m < n):

Restricted isometry property (Candes & Tao 2005)

For all s-sparse x € IR", there exists a ds € (0, 1) such that

(1—=65)[Ix]15 < ||Ax|I3 < (1 +65)|Ix]|3, and the smallest 55
is said to be the restricted isometry constant (RIC) associated
with A.

Extension to images

We say that a linear operator A : C"™*"™ — C™ has the RIP
of order s and level 6 € (0,1) if for all s-sparse X € C™*"2,
there holds

(1= )X < [AXI]IZ < (1+9)[IX]3.
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Contributions in Chapter 6

Theorem 6.4.1

Assume the RIP of A and let d35 and 45 be the 3s- and
4s-RIC’s of A, respectively, with d3s < 3(1 —d45) — 1. If
a < \/1_(545\/375_ V1+(S3s\/§
o (\/1 — 045 + \/1 + (535)HX°ptH2,

then the minimizer x°P* of the springback problem satisfies

2 4
It =5l <\ ot 215~ %l

ﬁ\/1_545+\/1+53s

2 V3s+ /s '

- J
Here Xs € IR” denotes the truncated vector corresponding to the s
largest values of x (in absolute value).

where D; =
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Q The CS theory for the springback model assumes the same RIP
condition as that for the BP model, namely, d35 < 3(1 — d45) — 1.

U For the BP model and previous non-convex models, their
reconstruction bounds take the form of

X = %[lx
7

@ Comparison within the sparse regime, i.e., ||x — %s||1 = 0:

HXOpt - )_<H2 < Cl,sT + C2,s

w The springback model has a tighter reconstruction bound
than them in the sense of

/2
ETSCST

if the level of noise T satisfies

s 2
Dy C2
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Contributions in Chapter 7

Let H : CN*N — CN*N be the orthonormal bivariate Haar
wavelet transform. Images are also compressible w.r.t. wavelet
transforms:

Theorem 7.3.9

Let N = 2" with n € N. Assume M : CN*N — C™ be such
that the composite operator MH* : CN*N — C™ has the
RIP of order Cslog®(N) and level 6 < 0.6. Let X € CV*N be
a mean-zero image or an image containing some zero-valued

pixels, and X°P the solution to the enhanced TV model. If

. 48s log(N)
T K[| VXt

then we have

_ S 1 % X

- J
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Needell and Ward 2013

The reconstruction error bound of the TV model (with RIP
level § < 1/3):

H)‘( _XoptH2 < Hvx — (Vx)sHl
- ) ve

To explore the scenarios where the bound of the enhanced TV
model is tighter in the sense of

+T.

J

[VX = (VX)slla

+7T:

Vet LR - (vl <

§%

Q Sparse regime |[VX — (VX)s|1 =0: T 2

/\‘?‘

s
IIVX (VX)sl1 ™
LHS is an increasing function of s, and a limited number m of
observations admits a small s

U Noise-free regime T =
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Pros and Cons of our new model

Pros:

U Benefited from non-convexity, our models do not introduce
additional tricky implementation:

In light of the difference-of-convex algorithm (DCA), we first
linearize the subtracted convex term, and then solve a
sequence of convex subproblems by ADMM.

Q Our model enjoys tighter reconstruction error bounds in
scenarios of less observations and/or larger noise level.

Cons:

U Achilles’ Heel: the choice of & - our model may be unstable
with an inappropriate alpha, but it always performs better
than the convex model with an appropriate «.
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Phantom

Sampling Mask (7 lines)

TV, error = 0.4858

Figure: Reconstruction of 256 x 256 Shepp—Logan phantom.
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Thanks for your attention.

Photo taken from Grass Island/Tap Mun, Hong Kong.



