Restricted Isometry and Information-Based Numerical Analysis

for the Degree of Doctor of Philosophy

Hao-Ning Wu
The University of Hong Kong June 26, 2023

Overview

- Motivation and terms explained - Chapter 1
\triangleright numerical analysis, information-based, and restricted isometry
- Polynomial approximation - Chapters 2-4
\triangleright hyperinterpolation, quadrature, and singular/oscillatory functions
- Numerical solutions to PDEs - Chapter 5
\diamond spectral methods, Allen-Cahn equation, and maximum principles
- Compressed sensing and imaging - Chapters 6-7
\diamond compressed sensing, image reconstruction, and new regularization

Terms explained

Lloyd N. Trefethen (SIAM News, Nov 1992)

Numerical analysis is the study of algorithms for the problems of continuous mathematics.
e.g., approximating f, solving $L u=f$ for u, minimizing f, \ldots discretization \downarrow samples $\left\{f\left(x_{j}\right)\right\}$

Information-based numerical analysis is the study of algorithms for the problems of continuous mathematics without full access to the concerned objects but only partial, contaminated, and priced information.

You can add qualifications, \cdots, but this definition is the essence of the matter, and the spotlight is on algorithms, not rounding errors. If rounding errors vanished, 90% of numerical analysis would remain.

- Trefethen: An Applied Mathematician's Apology (2022)

Information-based situations

The term information-based refers to situations where the information (e.g. samples) is
partial - we cannot solve the continuous mathematics problem exactly and uniquely with the information at hand
contaminated - the information is processed with errors (e.g. sampling noise and rounding errors)
\square priced - we are charged for each sample
${ }^{n}+$ Claude Shannon and information theory? Not the same.
In' Information-based complexity (IBC)? Partly the same.
\Rightarrow IBC optimizes total cost (incl. sampling and computation)
\Rightarrow We explore reasonable error bounds under information-based situations

Toy example: M. J. D. Powell (1936-2015) and derivative-free opt'

Given an oracle (no first-order information, let alone the second) $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, how to solve

$$
\min _{x \in \mathbb{R}^{d}} f(x)
$$

with function evaluations only, referred to as the derivative-free optimization?

Fun fact: both illustrations were designed by ChatGPT.

Yet another term: restricted isometry

We assume restricted isometry of our samples.
\Rightarrow For numerical integration $\sum_{j=1}^{m} w_{j} f\left(x_{j}\right) \approx \int_{\Omega} f(x) d \omega(x)$:
Marcinkiewicz-Zygmund property (1937)
For all $\chi \in \mathbb{P}_{n}$, there exists an $\eta \in[0,1)$ such that
$(1-\eta) \int_{\Omega} \chi^{2} \mathrm{~d} \omega_{d} \leq \sum_{j=1}^{m} w_{j} \chi\left(x_{j}\right)^{2} \leq(1+\eta) \int_{\Omega} \chi^{2} \mathrm{~d} \omega_{d}$.
\Leftrightarrow For sub-sampling $A \in \mathbb{R}^{m \times n}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}(m \leq n)$:
Restricted isometry property (Candès \& Tao 2005)
For all s-sparse $x \in \mathbb{R}^{n}$, there exists a $\delta_{s} \in(0,1)$ such that $\left(1-\delta_{s}\right)\|x\|_{2}^{2} \leq\|A x\|_{2}^{2} \leq\left(1+\delta_{s}\right)\|x\|_{2}^{2}$.

Polynomial approximation

D Polynomial interpolation: complicated in multivariate cases

Least squares (LS) approximation: hard to analyze unless obtaining the minimizer's explicit form

\square Orthogonal projection: non-implementable on computers

Hyperinterpolation

Ian H. Sloan (in the early 1990s): Does the interpolation of functions on S^{1} have properties as good as orthogonal projection?
\& Sloan ('95 JAT)
\square on S^{1} : Yes.
on $S^{d}(d \geq 2)$ and most high-dim regions: remaining Problematic to this day!
\square Using more points than interpolation? \rightarrow hyperinterpolation

Photo taken from the Red Centre, UNSW Sydney.
$\square \Omega \subset \mathbb{R}^{d}$: general compact region
$\square \mathbb{P}_{n}$: space of polynomials of degree $\leq n$ over $\Omega ; d_{n}:=\operatorname{dim} \mathbb{P}_{n}$
$\square\left\{p_{1}, p_{2}, \ldots, p_{d_{n}}\right\}$: orthonormal basis of \mathbb{P}_{n}

The orthogonal projection of $f \in C(\Omega)$ onto \mathbb{P}_{n} is defined as $\mathcal{P}_{n} f:=\sum_{\ell=1}^{d_{n}}\left\langle f, p_{\ell}\right\rangle p_{\ell}$, where $\langle f, g\rangle=\int_{\Omega} f g \mathrm{~d} \omega$.

The hyperinterpolation of $f \in C(\Omega)$ onto \mathbb{P}_{n} is defined as

$$
\mathcal{L}_{n} f:=\sum_{\ell=1}^{d_{n}}\left\langle f, p_{\ell}\right\rangle_{m} p_{\ell}
$$

where $\langle f, g\rangle_{m}:=\sum_{j=1}^{m} w_{j} f\left(x_{j}\right) g\left(x_{j}\right)$ with all $w_{j}>0$.

- $\mathcal{L}_{n} f$ is a discretized version of $\mathcal{P}_{n} f$.
$\square \mathcal{L}_{n} f$ is the minimizer of a discrete LS problem:

$$
\mathcal{L}_{n} f=\arg \min _{p \in \mathbb{P}_{n}} \sum_{j=1}^{m} w_{j}\left[f\left(x_{j}\right)-p\left(x_{j}\right)\right]^{2}
$$

$\square \mathcal{L}_{n} f$ reduces to interpolation $\left(\mathcal{L}_{n} f\left(x_{j}\right)=f\left(x_{j}\right), j=1, \ldots, m\right)$ if the quadrature rule is minimal: an m-pt quadrature is minimal if $m=d_{n}$ and its exactness degree exceeds $2 n$.

The quadrature rule $\sum_{j=1}^{m} w_{j} g\left(x_{j}\right) \approx \int_{\Omega} g \mathrm{~d} \omega$ is said to have exactness degree $2 n$ if

$$
\sum_{j=1}^{m} w_{j} g\left(x_{j}\right)=\int_{\Omega} g d \omega \quad \forall g \in \mathbb{P}_{2 n}
$$

Caveat: minimal quadrature rules can be ONLY constructed on a few low-dimensional Ω, such as $[-1,1],[-1,1]^{2}$, and S^{1}. No minimal quadrature rules are constructed on $[-1,1]^{d}(d \geq 3)$ or $S^{d}(d \geq 2)$.

The theory of hyperinterpolation was established under the assumption of quadrature exactness degree.

Theorem (Sloan 1995)

Assume the involved quadrature rule has exactness degree $2 n$. Then for any $f \in C(\Omega)$, its hyperinterpolant $\mathcal{L}_{n} f$ satisfies:

- $\mathcal{L}_{n} \chi=\chi$ for any $\chi \in \mathbb{P}_{n}$;
$\square\left\langle\mathcal{L}_{n} f-f, \chi\right\rangle_{m}=0$ for all $\chi \in \mathbb{P}_{n}$; (cf. $\left\langle\mathcal{P}_{n} f-f, \chi\right\rangle=0 \forall \chi \in \mathbb{P}_{n}$)
- $\left\|\mathcal{L}_{n} f\right\|_{2} \leq V^{1 / 2}\|f\|_{\infty}$;
- $\left\|\mathcal{L}_{n} f-f\right\|_{2} \leq 2 V^{1 / 2} E_{n}(f)$.

Here $V=|\Omega|$ and $E_{n}(f):=\inf _{\chi \in \mathbb{P}_{n}}\|f-\chi\|_{\infty}$.
Remark: No $L^{2} \rightarrow L^{2}$ theory but only $C \rightarrow L^{2}$ (explained later).

On quadrature exactness

Clenshaw-Curtis quad (1960) $n+1$ points $\rightarrow n$ exactness degree

Gauss-Chebyshev quad (19th century) $n+1$ points $\rightarrow 2 n+1$ exactness degree

* Trefethen ('08 SIREV): entered the complex plane and demonstrated for most functions, the Clenshaw-Curtis and Gauss quadrature rules have comparable accuracy
\& Trefethen ('22 SIREV): numerical integral is an analysis topic, while quadrature exactness is an algebraic matter

Contributions in Chapter 2

Recall the Marcinkiewicz-Zygmund (MZ) property

$$
(1-\eta) \int_{\Omega} \chi^{2} \mathrm{~d} \omega_{d} \leq \sum_{j=1}^{m} w_{j} \chi\left(x_{j}\right)^{2} \leq(1+\eta) \int_{\Omega} \chi^{2} \mathrm{~d} \omega_{d} \quad \forall \chi \in \mathbb{P}_{n}
$$

What if relaxing $2 n$ to, say, $n+k$ with $0<k \leq n$?

Theorem 2.2.8

Assume the quadrature rule has exactness degree $n+k$ and satisfies the MZ property. Then for any $f \in C(\Omega)$:
$\square \mathcal{L}_{n} \chi=\chi$ for any $\chi \in \mathbb{P}_{k}$;
$\square\left\langle\mathcal{L}_{n} f-f, \chi\right\rangle_{m}=0$ for all $\chi \in \mathbb{P}_{k}$;

- $\left\|\mathcal{L}_{n} f\right\|_{2} \leq \frac{V^{1 / 2}}{\sqrt{1-\eta}}\|f\|_{\infty}$;
- $\left\|\mathcal{L}_{n} f-f\right\|_{2} \leq\left(\frac{1}{\sqrt{1-\eta}}+1\right) V^{1 / 2} E_{k}(f)$.

Why Marcinkiewicz-Zygmund?

\Rightarrow The key observation to show the stability of $\mathcal{L}_{n} f$ (with exact.):

$$
\left\|\mathcal{L}_{n} f\right\|_{2}^{2}+\underbrace{\left\langle f-\mathcal{L}_{n} f, f-\mathcal{L}_{n} f\right\rangle_{m}}_{\geq 0\left(\text { why all } w_{j}>0\right)}=\langle f, f\rangle_{m}=\underbrace{\sum_{j=1}^{m} w_{j} f\left(x_{j}\right)^{2} \leq V\|f\|_{\infty}^{2}}_{\text {why } C \rightarrow L^{2} \text { theory only }}
$$

\Rightarrow When the quad exactness degree is $n+k(0<k \leq n)$:

$$
\begin{gathered}
\left\|\mathcal{L}_{n} f\right\|_{2}^{2}+\underbrace{\left\langle f-\mathcal{L}_{n} f, f-\mathcal{L}_{n} f\right\rangle_{m}+\sigma_{m, n, f}}_{\geq 0 ?}=\langle f, f\rangle_{m} \\
\sigma_{n, k, f}=\left\langle\mathcal{L}_{n} f-\mathcal{L}_{k} f, \mathcal{L}_{n} f-\mathcal{L}_{k} f\right\rangle-\left\langle\mathcal{L}_{n} f-\mathcal{L}_{k} f, \mathcal{L}_{n} f-\mathcal{L}_{k} f\right\rangle_{m}
\end{gathered}
$$

\Rightarrow Note that $\mathcal{L}_{n} f-\mathcal{L}_{k} f \in \mathbb{P}_{n}$, the $\mathbf{M Z}$ property implies

$$
\left|\sigma_{n, k, f}\right| \leq \eta\left\langle\mathcal{L}_{n} f-\mathcal{L}_{k} f, \mathcal{L}_{n} f-\mathcal{L}_{k} f\right\rangle
$$

Numerical results on $[-1,1]$

p_{ℓ} : normalized Legendre polynomials; $d_{n}=\operatorname{dim} \mathbb{P}_{n}=n+1$

Figure: Hyperinterpolants $\mathcal{L}_{40}^{\mathcal{S}} f$ and $\mathcal{L}_{40} f$ of $f=\exp \left(-x^{2}\right)$, constructed by various quadrature rules.

Numerical results on \mathbb{S}^{2}

Delsarte, Goethals, and Seidel 1977

A point set $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\} \subset S^{2}$ is said to be a spherical t-design if it satisfies

$$
\frac{1}{m} \sum_{j=1}^{m} g\left(x_{j}\right)=\frac{1}{4 \pi} \int_{\mathrm{S}^{2}} g \mathrm{~d} \omega \quad \forall g \in \mathbb{P}_{t}
$$

spherical 50-design: 2601 pts
spherical 30-design: 961 pts

Figure: Spherical 50- and 30-designs, generated by the method proposed by An, Chen, Sloan, and Womersley (2010).
$p_{\ell}:$ spherical harmonics; $d_{n}=\operatorname{dim} \mathbb{P}_{n}=(n+1)^{2}$

$$
\left|\mathcal{L}_{25}^{\mathrm{S}} f-f\right|
$$

$$
\left|\mathcal{L}_{25} f-f\right|
$$

Figure: Hyperinterpolants $\mathcal{L}_{25}^{S} f$ and $\mathcal{L}_{25} f$ of a Wendland function, constructed by spherical t-designs with $t=50$ (upper row) and 30 (lower row).
$\mathcal{L}_{25}^{\mathrm{S}} f$

$$
\left|\mathcal{L}_{25}^{\mathrm{S}} f-f\right|
$$

$\mathcal{L}_{25} f$

$$
\left|\mathcal{L}_{25} f-f\right|
$$

Figure: Hyperinterpolants $\mathcal{L}_{25}^{S} f$ and $\mathcal{L}_{25} f$ of $f(\mathbf{x})=f(x, y, z)=|x+y+z|$, constructed by spherical t-designs with $t=50$ (upper row) and 30 (lower row).

Contributions in Chapter 3: Hyperinterpolation of singular/oscillatory

 functionsWhy a higher hyperinterpolation degree is desired even if the quadrature exactness is not enough: an application How to approximate functions of the form $F(x)=K(x) f(x)$?
$\Leftrightarrow K \in L^{1}(\Omega)$, which needs not be continuous or of one sign
$\Rightarrow f \in C(\Omega)$ (and preferably smooth)
Example: fundamental solutions of the Helmholtz equation

$$
G(x, y)= \begin{cases}\frac{i}{4} H_{0}^{(1)}(\kappa|x-y|) & \text { for } x, y \in \mathbb{R}^{2} \\ \frac{1}{4 \pi} \frac{e^{i \kappa|x-y|}}{|x-y|} & \text { for } x, y \in \mathbb{R}^{3}\end{cases}
$$

- $\mathcal{P}_{n} F:=\sum_{\ell=1}^{d_{n}}\left\langle K f, p_{\ell}\right\rangle p_{\ell}$ or $\mathcal{L}_{n} F:=\sum_{\ell=1}^{d_{n}}\left\langle K f, p_{\ell}\right\rangle_{m} p_{\ell}$

To evaluate, by classical quadrature rules, the integrals

$$
\left\langle K f, p_{\ell}\right\rangle=\int_{\Omega} K(x) f(x) p_{\ell} \mathrm{d} \omega(x)
$$

is inefficient.

Instead, a semi-analytical way for $\int_{\Omega} K(x) f(x) \mathrm{d} \omega(x)$:

1. Replace f by its interpolant or approximant $\sum_{\ell=1}^{d_{n}} c_{\ell} p_{\ell}$;
2. Evaluate the integral by

$$
\int_{\Omega} K(x) f(x) \mathrm{d} \omega(x) \approx \sum_{\ell=1}^{d_{n}} c_{\ell} \int_{\Omega} K(x) p_{\ell}(x) \mathrm{d} \omega(x)
$$

3. Assume the modified moments $\int_{\Omega} K(x) p_{\ell}(x) \mathrm{d} \omega(x)$ can be evaluated analytically or stably by some iterative subroutines.
\triangleright Let us make this assumption from now on.

Efficient hyperinterpolation

$$
\mathcal{S}_{n} F:=\sum_{\ell=1}^{d_{n}}\left(\int_{\Omega} K\left(\mathcal{L}_{n} f\right) p_{\ell} \mathrm{d} \omega\right) p_{\ell}
$$

4. We need to evaluate $\int_{\Omega} K(x) p_{\ell}(x) p_{\ell^{\prime}}(x) \mathrm{d} \omega(x)$ for $\mathcal{S}_{n} F$, then additionally represent $p_{\ell}(x) p_{\ell^{\prime}}(x)$ by an orthonormal basis.

Theorem 3.5.4

Assume the quadrature rule has exactness degree $n+k$ and satisfies the MZ property. Then for any $f \in C(\Omega)$:
Let $K \in C(\Omega)$. $\left\|\mathcal{S}_{n} F\right\|_{2} \leq \frac{V^{1 / 2}}{\sqrt{1-\eta}}\|K\|_{\infty}\|f\|_{\infty}$;
\square Let $K \in C(\Omega) .\left\|\mathcal{S}_{n} F-F\right\|_{2} \leq$

$$
\left(\frac{V^{1 / 2}}{\sqrt{1-\eta}}\|K\|_{\infty}+\|K\|_{2}\right) E_{k}(f)+2 V^{1 / 2} E_{n}\left(K \chi^{*}\right)
$$

Here $\chi^{*} \in \mathbb{P}_{k}$ is the best uniform approximation of f in \mathbb{P}_{k}. (We also have analysis for $K \in L^{1}$ and L^{2})

Considering $\mathcal{L}_{n} F=\mathcal{L}_{n}(K f)$, we have $\left\|\mathcal{L}_{n} F-F\right\|_{2} \lesssim E_{k}(K f)$. Comparison:

$$
\begin{array}{c|c}
\mathcal{S}_{n} F & \mathcal{L}_{n} F \\
\hline E_{k}(f) \& E_{n}\left(K \chi^{*}\right) & E_{k}(K f)
\end{array}
$$

Numerical results on $[-1,1]$

$\Leftrightarrow K(x)=e^{i \kappa x}$ with $\kappa>0$.
\Leftrightarrow Filon-Clenshaw-Curtis rule (Domínguez, Graham, and Smyshlyaev 2011) for modified moments β_{r}.

Figure: Approximation of $F(x)=e^{i k x}\left(1.2-x^{2}\right)^{-1}$ by \mathcal{L}_{n} and \mathcal{S}_{n} with $(\kappa, n, m)=(100,120,70)$.
\Leftrightarrow Spherical harmonics $Y_{\ell, k}$ themselves are oscillatory!
\Leftrightarrow Using high-order spherical t-designs to evaluate the modified moments analytically.

Figure: Approximation of $F(x)=Y_{\ell, k}(x, y, z) \cos (\cosh (x z)-2 y)$ by \mathcal{L}_{n} and \mathcal{S}_{n}.

Contributions in Chapter 4: What if totally discarding quadrature

 exactness?A case study on spheres: The polynomial space $\mathbb{P}_{n}\left(\mathrm{~S}^{d}\right)$ is the span of spherical harmonics

$$
\left\{Y_{\ell, k}: \ell=0,1, \ldots, n, k=1,2, \ldots, Z(d, \ell)\right\}
$$

$\mathbb{P}_{n}\left(\mathrm{~S}^{d}\right)$ is also a reproducing kernel Hilbert space with the reproducing kernel

$$
G_{n}(x, y)=\sum_{\ell=0}^{n} \sum_{k=1}^{Z(d, \ell)} Y_{\ell, k}(x) Y_{\ell, k}(y)
$$

in the sense that $\langle\chi, G(\cdot, x)\rangle=\chi(x)$ for all $\chi \in \mathbb{P}_{n}\left(\mathrm{~S}^{d}\right)$.
For hyperinterpolation \mathcal{L}_{n} :

$$
\begin{aligned}
\mathcal{L}_{n} f(x) & =\sum_{\ell=0}^{n} \sum_{k=1}^{Z(d, \ell)}\left(\sum_{j=1}^{m} w_{j} f\left(x_{j}\right) Y_{\ell, k}\left(x_{j}\right)\right) Y_{\ell, k}(x) \\
& =\sum_{j=1}^{m} w_{j} f\left(x_{j}\right) G_{n}\left(x, x_{j}\right)
\end{aligned}
$$

Theorem 4.3.2

Assume the quadrature rule satisfies the MZ property. Then for any $f \in C\left(\mathrm{~S}^{d}\right)$:

$$
\begin{aligned}
& \left\|\mathcal{U}_{n} f\right\|_{L^{2}} \leq \sqrt{1+\eta}\left(\sum_{j=1}^{m} w_{j}\right)^{1 / 2}\|f\|_{\infty} ; \\
& \quad\left\|\mathcal{U}_{n} f-f\right\|_{L^{2}} \leq \\
& \left(\sqrt{1+\eta}\left(\sum_{j=1}^{m} w_{j}\right)^{1 / 2}+\left|S^{d}\right|^{1 / 2}\right) E_{n}(f) \\
& \\
& +\sqrt{\eta^{2}+4 \eta}\left\|\chi^{*}\right\|_{L^{2}}
\end{aligned}
$$

Notation: \mathcal{U}_{n} for hyperinterpolation without quadrature exactness Note: If the quadrature rule has exactness degree at least $\mathbf{1}$, then

$$
\sum_{j=1}^{m} w_{j}=\int_{S^{d}} 1 \mathrm{~d} \omega_{d}=\left|S^{d}\right|
$$

Controlling the constant η

Mhaskar, Narcowich, and Ward 2001

The MZ property holds for $\mathcal{X}_{m}:=\left\{x_{1}, \ldots, x_{m}\right\} \subset \mathbb{S}^{d}$ if $N \lesssim \frac{\eta}{2 h_{\mathcal{X}_{m}}}$, where $h_{\mathcal{X}_{m}}:=\max _{x \in \mathrm{~S}^{d-1}} \min _{x_{j} \in \mathcal{X}_{m}} \operatorname{dist}\left(x, x_{j}\right)$ is the mesh norm of \mathcal{X}_{m} and $\operatorname{dist}(x, y)$ denotes the geodesic distance.

Le Gia and Mhaskar 2009
If the quadrature rule is equal-weight and the quadrature points are i.i.d drawn from the distribution ω_{d}, then there exists a constant $\bar{c}:=\bar{c}(\gamma)$ such that the $\mathbf{M Z}$ property holds with probability exceeding $1-\bar{c} N^{-\gamma}$ on the condition

$$
m \geq \bar{c} \frac{N^{d} \log N}{\eta^{2}}
$$

Error bound investigated numerically

\square The error bound is controlled by n and m.
\square Le Gia \& Mhaskar (random points)
$\rightarrow \eta$ has a lower bound order $\sqrt{n^{2} \log n / m}$
$\rightarrow \sqrt{\eta^{2}+4 \eta}\left\|\chi^{*}\right\|_{L^{2}}$ has a lower bound of order $m^{-1 / 4}$
Convergence of $\mathcal{U}_{n} f_{1}$

Figure: Approximating $f_{1}(x)=\left(x_{1}+x_{2}+x_{3}\right)^{2} \in \mathbb{P}_{6}\left(S^{2}\right)$.

- $f_{2}\left(x_{1}, x_{2}, x_{3}\right):=\left|x_{1}+x_{2}+x_{3}\right|+\sin ^{2}\left(1+\left|x_{1}+x_{2}+x_{3}\right|\right)$
- The Franke function for the sphere
$f_{3}\left(x_{1}, x_{2}, x_{3}\right):=0.75 \exp \left(-\left(\left(9 x_{1}-2\right)^{2}\right) / 4-\left(\left(9 x_{2}-2\right)^{2}\right) / 4-\left(\left(9 x_{3}-2\right)^{2}\right) / 4\right)$

$$
+0.75 \exp \left(-\left(\left(9 x_{1}+1\right)^{2}\right) / 49-\left(\left(9 x_{2}+1\right)\right) / 10-\left(\left(9 x_{3}+1\right)\right) / 10\right)
$$

$$
+0.5 \exp \left(-\left(\left(9 x_{1}-7\right)^{2}\right) / 4-\left(\left(9 x_{2}-3\right)^{2}\right) / 4-\left(\left(9 x_{3}-5\right)^{2}\right) / 4\right)
$$

$$
-0.2 \exp \left(-\left(\left(9 x_{1}-4\right)^{2}\right)-\left(\left(9 x_{2}-7\right)^{2}\right)-\left(\left(9 x_{3}-5\right)^{2}\right)\right) \in C^{\infty}\left(S^{2}\right)
$$

Figure: Approximating f_{2} and f_{3}.

Applications to nonlinear partial differential equations (PDEs)

To compute smooth solutions of semi-linear PDEs on $S^{d-1} \subset \mathbb{R}^{d}$ with dimension $d \geq 3$ of the form

$$
u_{t}=\boldsymbol{L} u+\boldsymbol{N}(u), \quad u(0, x)=u_{0}(x)
$$

where \boldsymbol{L} is a constant-coefficient linear differential operator, and \boldsymbol{N} is a constant-coefficient nonlinear differential (or non-differential) operator of lower order.

Example: Allen-Cahn equation

$$
u_{t}=v^{2} \Delta u-F^{\prime}(u), \quad u(0, x)=u_{0}(x)
$$

where $F^{\prime}(u)=f(u)=u^{3}-u$.
\Rightarrow energy stability: $\mathcal{E}(u(t, \cdot)) \leq \mathcal{E}(u(s, \cdot))$ for $s \leq t<\infty$ with

$$
\mathcal{E}(u):=\int_{S^{d-1}}\left(\frac{1}{2} v^{2}|\nabla u|^{2}+F(u)\right) \mathrm{d} \omega_{d}
$$

\Rightarrow maximum principle: the entire solution is bounded by $\left\|u_{0}\right\|_{\infty}$

Motivations

Motivations:

1. Remove stringent and technical conditions (e.g. $\tau \ll 1$ and $\left.\sup _{u}\left|F^{\prime \prime}(u)\right| \leq L\right)$ in numerical schemes
\rightarrow effective maximum principle (D. Li 2021) \rightarrow energy stability
2. Investigate the behavior of numerical solutions under quadrature rules
3. Information-based situations

Our idea in a nutshell: linearizing the nonlinear part $\boldsymbol{N}(u)$ by hyperinterpolation:

$$
\left\{\begin{array}{l}
\frac{u^{n+1}-u^{n}}{\tau}=v^{2} \Delta u^{n+1}-\mathcal{L}_{N}\left(\left(u^{n}\right)^{3}-u^{n}\right), \quad n \geq 0 \\
u^{0}=\mathcal{L}_{N} u_{0}
\end{array}\right.
$$

where $\tau>0$ is the time step.
For each time iteration: using $-\Delta Y_{\ell, k}=\ell(\ell+d-2) Y_{\ell, k}$, only need to solve a linear system.

Contributions in Chapter 5

Theorems 5.3.1 \& 5.3.3: L^{∞} stability and effective maximum principle for $\tau \leq 1 / 2$

Let $0<\alpha_{0} \leq 1$ and $s_{0} \geq \frac{d-1}{2}$. Assume $u_{0} \in H^{s}\left(S^{d-1}\right)$ with $s>d-1$ and $\left\|u_{0}\right\|_{\infty} \leq 1$. Control $\eta=\tilde{c} N^{-\varepsilon}$ for any $\tilde{c} \geq 0$ and $\varepsilon>s_{0}$. If $N \geq N_{1}:=N_{1}\left(\alpha_{0}, v, s, d, u_{0}, \varepsilon\right)$, then

$$
\sup _{n \geq 0}\left\|u^{n}\right\|_{\infty} \leq 1+\alpha_{0}
$$

If $N \geq N_{2}:=N_{2}\left(\nu, s, d, u_{0}, \varepsilon\right)$, then for any $n \geq 1$,

$$
\begin{aligned}
\left\|u^{n}\right\|_{\infty} \leq & 1+\theta^{n} \alpha_{0}+\frac{1-\theta^{n}}{1-\theta} \tau C_{v, u_{0}, s, d}\left(\sqrt{1+\eta} N^{d-1-s} .\right. \\
& \left.+\eta N^{s_{0}+\frac{d-1}{2}-s}+\eta N^{s_{0}}\right)
\end{aligned}
$$

where $\theta=1-2 \tau$.

Idea of proof:

- Induction for n;
- For each induction:
\Leftrightarrow Using the best approximation error estimate (Ragozin 1971) with the Sobolev embedding into Hölder spaces (note that $E_{N}(f)$ is defined by $\|\cdot\|_{\infty}$, while Sobolev spaces here $\left.\|\cdot\|_{L^{2}}\right):$

$$
E_{N}(f) \leq \frac{c_{3}(f)}{N^{s-\frac{d-1}{2}}}\|f\|_{H^{s}} ;
$$

\Leftrightarrow Using discrete smoothing technique (bootstrapping) for the boundedness of $\left\|u^{n}\right\|_{H^{s}}$.

Theorem 5.3.6: L^{∞} stability for $1 / 2<\tau<2$

Let $1 / 2<\tau \leq 2-\epsilon_{0}$ for some $0<\epsilon_{0} \leq 1$,

$$
M_{0}=\frac{1}{2}\left(\frac{(1+\tau)^{3 / 2}}{\sqrt{3 \tau}} \cdot \frac{2}{3}+\sqrt{\frac{2+\tau}{\tau}}\right)
$$

and $s_{0} \geq(d-1) / 2$. Assume $u_{0} \in H^{s}\left(S^{d-1}\right)$ with $s>d-1$ and $\left\|u^{0}\right\|_{\infty} \leq M_{0}$. Control $\eta=\tilde{c} N^{-\varepsilon}$ for any $\tilde{c} \geq 0$ and $\varepsilon>s_{0}$. If $N \geq N_{3}:=N_{3}\left(\epsilon_{0}, v, s, d, u_{0}, \varepsilon\right)$, then

$$
\sup _{n \geq 0}\left\|u^{n}\right\|_{\infty} \leq M_{0}
$$

No effective maximum principle derived. Idea of proof:
Induction for n again;
\square For each induction, using lemma by Li to bound $\left\|p\left(u^{n}\right)\right\|_{\infty}$, where $p(x)=(1+\tau) x-\tau x^{3}$.

Refined results with quadrature exactness

- If the quadrature rule has exactness degree $2 N$, our scheme for $u_{t}=\boldsymbol{L} u+\boldsymbol{N}(u)$ is equivalent to a discrete Galerkin scheme $\frac{1}{\tau}\left\langle u^{n+1}-u^{n}, \chi\right\rangle_{m}=\left\langle\boldsymbol{L} u^{n+1}, \chi\right\rangle_{m}+\left\langle\boldsymbol{N}\left(u^{n}\right), \chi\right\rangle_{m} \quad \forall \chi \in \mathbb{P}_{N}$.

Corollary 5.4.1: Additionally assuming the quad. exact. 2 N

- L^{∞} stability for $\tau \leq 1 / 2$. If $N \geq N_{4}\left(\alpha_{0}, v, s, d, u_{0}\right)$, then $\sup _{n \geq 0}\left\|u^{n}\right\|_{\infty} \leq 1+\alpha_{0}$.
- Effective maximum principle for $\tau \leq 1 / 2$. If $N \geq N_{4}^{\prime}\left(v, s, d, u_{0}\right)$, then for any $n \geq 1$,

$$
\left\|u^{n}\right\|_{\infty} \leq 1+\theta^{n} \alpha_{0}+\frac{1-\theta^{n}}{1-\theta} \tau C_{v, u_{0}, s, d} N^{d-1-s}
$$

- L^{∞}-stability for $1 / 2<\tau<2$. Let $1 / 2<\tau<2-\epsilon_{0}$ for some $0<\epsilon_{0} \leq 1$. If $N \geq N_{4}^{\prime \prime}\left(\epsilon_{0}, v, s, d, u_{0}\right)$, then

$$
\sup \left\|u^{n}\right\|_{\infty} \leq M_{0}
$$

$$
n \geq 0
$$

Energy stability

Lemma 5.4.3: Energy estimates

For any $n \geq 0$, if the quad exactness degree $\geq 2 N$, then

$$
\begin{aligned}
& \tilde{\mathcal{E}}\left(u^{n+1}\right)-\tilde{\mathcal{E}}\left(u^{n}\right)+\left(\frac{1}{\tau}+\frac{1}{2}\right) \sum_{j=1}^{m} w_{j}\left(u^{n+1}\left(x_{j}\right)-u^{n}\left(x_{j}\right)\right)^{2} \\
& \quad \leq \frac{3}{2} \max \left\{\left\|u^{n}\right\|_{\infty}^{2},\left\|u^{n+1}\right\|_{\infty}^{2}\right\} \sum_{j=1}^{m} w_{j}\left(u^{n+1}\left(x_{j}\right)-u^{n}\left(x_{j}\right)\right)^{2}
\end{aligned}
$$

if the quad exactness degree $\geq 4 N$, then

$$
\begin{aligned}
& \mathcal{E}\left(u^{n+1}\right)-\mathcal{E}\left(u^{n}\right)+\left(\frac{1}{\tau}+\frac{1}{2}\right) \int_{S^{d-1}}\left(u^{n+1}-u^{n}\right)^{2} \mathrm{~d} \omega_{d} \\
& \quad \leq \frac{3}{2} \max \left\{\left\|u^{n}\right\|_{\infty}^{2},\left\|u^{n+1}\right\|_{\infty}^{2}\right\} \int_{S^{d-1}}\left(u^{n+1}-u^{n}\right)^{2} \mathrm{~d} \omega_{d}
\end{aligned}
$$

Here $\mathcal{E}(u)$ denote the energy (previously defined) of u, and $\tilde{\mathcal{E}}(u)$ discretizes $\mathcal{E}(u)$ by the concerned quadrature rule.

- For (discrete) energy stability, it suffice to control $\left\|u^{n}\right\|_{\infty}$ (by L^{∞} stability derived previously) such that

$$
\frac{1}{\tau}+\frac{1}{2} \geq \frac{3}{2} \sup _{n \geq 0}\left\|u^{n}\right\|_{\infty}^{2}
$$

Why quadrature exactness?
To derive the above (discrete) energy estimates, we need

$$
\left\langle f\left(u^{n}\right)-\mathcal{L}_{N}\left(f\left(u^{n}\right)\right), u^{n+1}-u^{n}\right\rangle_{m}=0
$$

and

$$
\left\langle f\left(u^{n}\right)-\mathcal{L}_{N}\left(f\left(u^{n}\right)\right), u^{n+1}-u^{n}\right\rangle=0
$$

respectively, which are ensured by

1) the projection property $\left\langle f-\mathcal{L}_{N}, \chi\right\rangle_{m}=0 \forall \chi \in \mathbb{P}_{N}$ of hyperinterpolation if the quad exactness $\operatorname{deg} \geq 2 N$; and
2) $\left\langle f-\mathcal{L}_{N}, \chi\right\rangle=\left\langle f-\mathcal{L}_{N}, \chi\right\rangle_{m}$ if $f \in \mathbb{P}_{3 N}$ and the quad exactness deg $\geq 4 N$.

$$
(n, t)=(0,0)
$$

$$
(n, t)=(0,0)
$$

$(n, t)=(10,5)$

$$
(n, t)=(0,0)
$$

$$
(n, t)=(10,5)
$$

$$
(n, t)=(20,10)
$$

$$
(n, t)=(30,15)
$$

$$
(n, t)=(140,70)
$$

$(n, t)=(20,10)$

$(n, t)=(30,15)$

$$
(n, t)=(140,70)
$$

Figure: Numerical solution to the Allen-Cahn equation with $v=0.1$ and initial condition $u(0, x, y, z)=\cos (\cosh (5 x z)-10 y)$ using our scheme with $\tau=0.5$, $N=15$, and different quadrature points. From top row to bottom row: $m=\left\lfloor 120 N^{2} \ln N\right\rfloor=73,117$ random points; $m=(2 N+1)^{2}=961$ equal area points; and $m=961$ spherical $2 N$-designs.

Compressed sensing (CS) and imaging

To recovery an unknown $\bar{x} \in \mathbb{R}^{n}$ from $b=A \bar{x}+e \in \mathbb{R}^{m}$, where $A \in \mathbb{R}^{m \times n}$ with $m \ll n$, and $e \in \mathbb{R}^{m}$ with $\|e\|_{2} \leq \tau$:
\square One may consider solving the ℓ^{0} minimization problem:

$$
\min _{x \in \mathbb{R}^{n}}\|x\|_{0} \quad \text { s.t. } \quad\|A x-b\|_{2} \leq \tau
$$

Alternatively, the basis pursuit (BP) model:

$$
\min _{x \in \mathbb{R}^{n}}\|x\|_{1} \quad \text { s.t. } \quad\|A x-b\|_{2} \leq \tau
$$

Our springback model: For $\alpha>0$,

$$
\min _{x \in \mathbb{R}^{n}}\|x\|_{1}-\frac{\alpha}{2}\|x\|_{2}^{2} \quad \text { s.t. } \quad\|A x-b\|_{2} \leq \tau
$$

\square Standard CS theory holds for the BP model, assuming that \bar{x} or its coefficients after an orthonormal transform are sparse:

$$
\left\|x^{\text {opt }}-\bar{x}\right\|_{2} \leq ?
$$

One type of theory is established under the RIP framework (restricted isometry).

Extending to image reconstruction: $y=\mathcal{M} \bar{X}+e \in \mathbb{C}^{m}$, where the unknown $\bar{X} \in \mathbb{C}^{N \times N}, \mathcal{M}: \mathbb{C}^{N \times N} \rightarrow \mathbb{C}^{m}$ with $m \ll N^{2}$, and $e \in \mathbb{R}^{m}$ with $\|e\|_{2} \leq \tau$.
\square BP model \rightarrow total variation (TV) model $\left(\|X\|_{\mathrm{TV}}=\|\nabla X\|_{1}\right):$

$$
\min _{X \in \mathbb{C}^{N \times N}}\|X\|_{\text {TV }} \quad \text { s.t. } \quad\|\mathcal{M} X-y\|_{2} \leq \tau
$$

- Springback model \rightarrow enhanced TV model:

$$
\min _{X \in \mathbb{C}^{n \times N}}\|X\|_{\mathrm{TV}}-\frac{\alpha}{2}\|\nabla X\|_{2}^{2} \quad \text { s.t. } \quad\|\mathcal{M} X-y\|_{2} \leq \tau
$$

\square Images becomes sparse after the gradient transform ∇ (due to the low density of edges within an image), but ∇ fails to be orthonormal \rightarrow obliged to establish image reconstruction theory from scratch.

Enhanced TV from a PDE perspective

Enhanced TV flow:

$$
\int\left(\|\nabla f(x)\|-\frac{\alpha}{2}\|\nabla f(x)\|^{2}\right) \mathrm{d} x \rightarrow \frac{\partial f}{\partial t}=\operatorname{div}\left(\frac{\nabla f}{\|\nabla f\|}\right)-\alpha \Delta f
$$

Noisy image, SSIM $=0.0190$

TV, SSIM $=0.8141$

Figure: Illustration of the TV and enhanced TV regularization for image denoising. Top row: SSIM values of each image; Bottom row: intensity profiles of each image along the horizontal straight line splitting the image equally.

Restricted isometry property (RIP) recalled

For sub-sampling $A \in \mathbb{R}^{m \times n}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}(m \leq n)$:

Restricted isometry property (Candès \& Tao 2005)

For all s-sparse $x \in \mathbb{R}^{n}$, there exists a $\delta_{s} \in(0,1)$ such that $\left(1-\delta_{s}\right)\|x\|_{2}^{2} \leq\|A x\|_{2}^{2} \leq\left(1+\delta_{s}\right)\|x\|_{2}^{2}$, and the smallest δ_{s} is said to be the restricted isometry constant (RIC) associated with A.

Extension to images

We say that a linear operator $\mathcal{A}: \mathbb{C}^{n_{1} \times n_{2}} \rightarrow \mathbb{C}^{m}$ has the RIP of order s and level $\delta \in(0,1)$ if for all s-sparse $X \in \mathbb{C}^{n_{1} \times n_{2}}$, there holds

$$
(1-\delta)\|X\|_{2}^{2} \leq\|\mathcal{A} X\|_{2}^{2} \leq(1+\delta)\|X\|_{2}^{2}
$$

Contributions in Chapter 6

Theorem 6.4.1
Assume the RIP of A and let $\delta_{3 s}$ and $\delta_{4 s}$ be the $3 s$ - and $4 s$-RIC's of A, respectively, with $\delta_{3 s}<3\left(1-\delta_{4 s}\right)-1$. If

$$
\alpha \leq \frac{\sqrt{1-\delta_{4 s}} \sqrt{3 s}-\sqrt{1+\delta_{3 s}} \sqrt{s}}{\left(\sqrt{1-\delta_{4 s}}+\sqrt{1+\delta_{3 s}}\right)\left\|x^{\mathrm{opt}}\right\|_{2}}
$$

then the minimizer $x^{\text {opt }}$ of the springback problem satisfies

$$
\begin{aligned}
& \quad\left\|x^{\mathrm{opt}}-\bar{x}\right\|_{2} \leq \sqrt{\frac{2}{D_{1}} \tau+\frac{4}{\alpha}\left\|\bar{x}-\bar{x}_{s}\right\|_{1}} \\
& \text { where } D_{1}=\frac{\alpha}{2} \frac{\sqrt{1-\delta_{4 s}}+\sqrt{1+\delta_{3 s}}}{\sqrt{3 s}+\sqrt{s}}
\end{aligned}
$$

Here $\bar{x}_{s} \in \mathbb{R}^{n}$ denotes the truncated vector corresponding to the s largest values of \bar{x} (in absolute value).

The CS theory for the springback model assumes the same RIP condition as that for the BP model, namely, $\delta_{3 s}<3\left(1-\delta_{4 s}\right)-1$.

- For the BP model and previous non-convex models, their reconstruction bounds take the form of

$$
\left\|x^{\mathrm{opt}}-\bar{x}\right\|_{2} \leq C_{1, s} \tau+C_{2, s} \frac{\left\|\bar{x}-\bar{x}_{s}\right\|_{1}}{\sqrt{s}}
$$

C Comparison within the sparse regime, i.e., $\left\|\bar{x}-\bar{x}_{s}\right\|_{1}=0$:
\Rightarrow The springback model has a tighter reconstruction bound than them in the sense of

$$
\sqrt{\frac{2}{D_{1}} \tau} \leq C_{s} \tau
$$

if the level of noise τ satisfies

$$
\tau>\frac{2}{D_{1} C_{s}^{2}}
$$

Contributions in Chapter 7

Let $\mathcal{H}: \mathbb{C}^{N \times N} \rightarrow \mathbb{C}^{N \times N}$ be the orthonormal bivariate Haar wavelet transform. Images are also compressible w.r.t. wavelet transforms:

Theorem 7.3.9

Let $N=2^{n}$ with $n \in \mathbb{N}$. Assume $\mathcal{M}: \mathbb{C}^{N \times N} \rightarrow \mathbb{C}^{m}$ be such that the composite operator $\mathcal{M} \mathcal{H}^{*}: \mathbb{C}^{N \times N} \rightarrow \mathbb{C}^{m}$ has the RIP of order $C_{s} \log ^{3}(N)$ and level $\delta<0.6$. Let $\bar{X} \in \mathbb{C}^{N \times N}$ be a mean-zero image or an image containing some zero-valued pixels, and $X^{\text {opt }}$ the solution to the enhanced TV model. If

$$
\alpha \leq \frac{\sqrt{48 s \log (N)}}{K_{2}\left\|\nabla X^{\mathrm{opt}}\right\|_{2}}
$$

then we have

$$
\left\|\bar{X}-X^{\mathrm{opt}}\right\|_{2} \lesssim \sqrt{\frac{\sqrt{s}}{\alpha} \tau+\frac{1}{\alpha}\left\|\nabla \bar{X}-(\nabla \bar{X})_{s}\right\|_{1}}
$$

Needell and Ward 2013

The reconstruction error bound of the TV model (with RIP level $\delta<1 / 3$):

$$
\left\|\bar{X}-X^{\mathrm{opt}}\right\|_{2} \lesssim \frac{\left\|\nabla \bar{X}-(\nabla \bar{X})_{s}\right\|_{1}}{\sqrt{s}}+\tau
$$

To explore the scenarios where the bound of the enhanced TV model is tighter in the sense of

$$
\sqrt{\frac{\sqrt{s}}{\alpha} \tau+\frac{1}{\alpha}\left\|\nabla \bar{X}-(\nabla \bar{X})_{s}\right\|_{1}} \lesssim \frac{\left\|\nabla \bar{X}-(\nabla \bar{X})_{s}\right\|_{1}}{\sqrt{s}}+\tau:
$$

\square Sparse regime $\left\|\nabla \bar{X}-(\nabla \bar{X})_{s}\right\|_{1}=0: \tau \gtrsim \frac{\sqrt{s}}{\alpha}$
D Noise-free regime $\tau=0: \frac{s}{\left\|\nabla \bar{X}-(\nabla \bar{X})_{s}\right\|_{1}} \lesssim \alpha$
LHS is an increasing function of s, and a limited number m of observations admits a small s

Pros and Cons of our new model

Pros:

\square Benefited from non-convexity, our models do not introduce additional tricky implementation:

In light of the difference-of-convex algorithm (DCA), we first linearize the subtracted convex term, and then solve a sequence of convex subproblems by ADMM.

- Our model enjoys tighter reconstruction error bounds in scenarios of less observations and/or larger noise level.

Cons:
\square Achilles' Heel: the choice of α - our model may be unstable with an inappropriate alpha, but it always performs better than the convex model with an appropriate α.

Figure: Reconstruction of 256×256 Shepp-Logan phantom.

Thanks for your attention.

Photo taken from Grass Island/Tap Mun, Hong Kong.

